64 Chapter 4

|sol = sp.solve(S, [w, x, y, z], dict=True)
| print (sol)

[{w: 564/85, x: 773/85, y: 14/85, z: -411/85}]

Problem 4.5 @49 You are designing the truss structure shown in figure 4.6,
which is to support the hanging of an external load fc = —fcj, where fc > 0. Your
organization plans to offer customers the following options:
e Any width (i.e., 2w)
e A selection of maximum load magnitudes L= fc/a€l, where I'=
{1 kN, 2 kN, 4 kN, 8 kN, 16 kN}, and where «a is the factor of safety

As the designer, you are to develop a design curve for the dimension & versus
half-width w for each maximum load L €T, under the following design constraints:

Minimize the dimension h

The tension in all members is no more than a given T

The compression in all members is no more than a given C

The magnitude of the support force at pin A is no more than a given Py
The magnitude of the support force at pin D is no more than a given Pp

Use a static analysis and the method of joints to develop a solution for the force
in each member Fag, Fac, etc., and the reaction forces using the sign convention
that tension is positive and compression is negative. Create a Python function that
returns & as a function of w for a given set of design parameters {T, C, P4, Pp, a, L}.
Use the function to create a design curve i versus 2w for each L €T, maximum
tension T =81 kN, maximum compression C =81 kN, maximum support A load
P4 =50 kN, maximum support D load Pp =50 kN, and a factor of safety of a =5.

!

Figure 4.6. A truss with pinned joints, supported by a hinge and a floating support,
with an applied load f.

C

Solution 4.5 @49

https://engineering-computing.ricopic.one/49
https://engineering-computing.ricopic.one/49

Symbolic Analysis 65

| #### Import Packages {-}

| import numpy as np

| import sympy as sp

| import matplotlib.pyplot as plt

Static Analysis Using the method of joints, we proceed through the joints, summing
forces in the x- and y-directions. We will assume all members are in tension, and
their sign will be positive if this is the case and negative, otherwise. Beginning with
joint A, which includes one reaction force R4 from the support,

YF,=0; Fac+Fapcos0=0 (4.1)
ZFyZ 5 Rp+Fppsinf=0. (4.2)

The angle 0 is known in terms of the dimensions w and & as
h
0 = arctan —.
w

These equations can be encode symbolically as follows:

RA, FAB, FAC, theta= sp.symbols(
"RA, FAB, FAC, theta", real=True
)
h, w = sp.symbols("h, w", positive=True)
eqAx = FAC + FAB#sp.cos(theta)
eqAy = RA + FAB*sp.sin(theta)
theta_wh = sp.atan(h/w)

Proceeding to joint B,
YF,=0; —Fapcos O+ FppcosO=0 (4.3)
LF,=0; —Fapsin@ — Fgp sin @ — Fgc =0. (4.4)
Encoding these equations,

|FBD, FBC = sp.symbols("FBD, FBC", real=True)
| eqBx = -FAB+*sp.cos(theta) + FBD*sp.cos(theta)
| eqBy = -FAB+*sp.sin(theta) - FBD+*sp.sin(theta) - FBC

For joint C, there is an externally applied force fc, so the analysis proceeds as
follows:

YF,=0; —Fpsc+Fcp=0 (4.5)
XF,=0; Fpc - fc=0. (4.6)

Encoding these equations,

66 Chapter 4

FCD = sp.symbols("FCD", real=True)
fC = sp.symbols("fC", positive=True)
eqCx = -FAC + FCD

FBC - fC

®
0

Q
<
Il

For joint D, the pinned reaction forces Rpy and R Dy are present, SO the analysis
proceeds as follows:

YF,=0; —Fcp—FppcosO+Rpy=0 (4.7)
ZFy =0; Fgp Sin9+RDy:0. (48)
Encoding these equations,

| RDx, RDy = sp.symbols("RDx, RDy", real=True)
| eqDx = -FCD - FBD+sp.cos(theta) + RDx
| eqDy = FBD+*sp.sin(theta) + RDy

In total, we have 8 force equations and 8 unknown forces (5 member forces and 3
reaction forces). Let’s construct the system and solve it for the unkown forces, as
follows:

S_forces = [

egAx, eqly, egBx, eqBy, eqCx, eqCy, eqDx, eqDy
] # 8 force equations
member_forces = [FAB, FAC, FBC, FBD, FCD] # 5 member forces
reaction_forces = [RA, RDx, RDy] # 3 reaction forces
forces_unknown = member_forces + reaction_forces # 8 unkown forces
sol_forces = sp.solve(S_forces, forces_unknown, dict=True); sol_forces

[{FAB: -fC/(2*sin(theta)),
FAC: fCxcos(theta)/(2*sin(theta)),
FBC: fC,
FBD: -fC/(2*sin(theta)),
FCD: fCxcos(theta)/(2*sin(theta)),
RA: £C/2,
RDx: O,
RDy: £C/2}]

This solution is in terms of fc and 6. Because w and h are our design parameters,
let’s substitute eqtheta such that our solution is rewritten in terms of fr, w, and h.
Create a list of solutions as follows:

Symbolic Analysis 67

forces_wh = {} # Initialize
for force in forces_unknown:
force_wh = force.subs(
sol_forces|[0]
) .subs(
theta, theta_wh
) .simplify ()
forces_wh[force] = force_wh
print (f"{force} = {force_wh}")

FAB = -fCxsqrt(h**2 + w*xx*2)/(2xh)
FAC = £C*w/(2*h)

FBC = fC

FBD = -fCxsqrt(h**2 + w*x*2)/(2xh)
FCD = fC*w/(2*h)

RA = fC/2
RDx = 0
RDy = fC/2

Define the constraints as follows:
|C, T, PA, PD = sp.symbols("C, T, PA, PD", positive=True)
|member_constraints = {"Tension": T, "Compression": C}
|reaction_constraints = A
| PA: (RA, 0),
| PD: (RDx, RDy)
| } # Max magnitude: (x force, y force)

Define a function that encodes the constraints as a list of expressions that must
be nonnegative.

68 Chapter 4

def get_force_constraints(
forces: dict,
member_forces: list,
member_constraints: dict,
reaction_constraints: dict,

"""Returns a list of expressions that must be nonnegative

Args:
- forces: Force solutions {force symbol: solution}
- member_forces: List of member symbols [FAB, FAC ...]
- member_constraints:
{"Tension": max tension, "Compression": max compression}
- reaction_constraints:
{max force symbol: (max x force, max y force)}
nnn
force_constraints = []
Append member constraints
for f_name, f_value in forces.items():
if f name in member_forces:
if f_value > 0: # Tension
force_constraints.append(
member_constraints["Tension"] - f_value
)
elif f_value < 0: # Compression
force_constraints.append(
member_constraints["Compression"] + f_value
)
Append reaction constraints
for constraint, pair in reaction_constraints.items():
force_constraints.append(
constraint - sp.sqrt(pair[0]#**2 + pair[1]#**2).subs(forces_wh)
)

return force_constraints

Now apply the function:

constraints = get_force_constraints(
forces_wh, member_forces, member_constraints, reaction_constraints

print (constraints)

[C - fCxsqrt(h**2 + w*x*2)/(2xh), T - fCxw/(2xh), T - fC, C -
[fC*sqrt(h**2 + wxx2)/(2%¥h), T - fCxw/(2xh), PA - fC/2, PD - £C/2]

At this point, we can solve for / in each expression that includes /. Because these
constraints are to be nonnegative, solving with equality gives the minimum /py;n.

Symbolic Analysis 69

Expressions that don’t include & must still be checked. We can use this opportunity
to sort the constraint expressions into those that involve i and those that do not.

h_mins = []
constraints_to_check = []
for constraint in constraints:
if h in constraint.free_symbols:
Solve for h
h_min_sol = sp.solve(constraint, h)
for h_min in h_min_sol:
h_mins.append(h_min)
else:
constraints_to_check.append(constraint)

Inspect the h_mins and constraints_to_check:

print(£"Min h solutions: {h_mins}")
print(f"Constraints to be checked: {constraints_to_check}")

Min h solutions: [fC*w*sqrt(1/(2+%C - £C))/sqrt(2+C + £C), fCxw/(2*T),
- fCxwxsqrt(1/(2+%C - £C))/sqrt(2xC + £C), fC*w/(2*T)]
Constraints to be checked: [T - fC, PA - fC/2, PD - £C/2]

Finally, define a function to design the truss:

def truss_designer(
h_mins: list,
constraints_to_check: list,
design_params: dict,

"""Returns an expression for h(w) using the design parameters provided
L = sp.symbols("L", positive=True)
alpha = sp.symbols("alpha", positive=True)
for constraint in constraints_to_check:
constraint_ = constraint.subs(fC, L*alpha).subs(design_params)
if constraint_ < O:
raise Exception(
f"Design failed for constraint: {constraint} < 0"
)
h_mins_ = []
for h_min in h_mins:
h_mins_.append(h_min.subs(fC, L*alpha).subs(design_params))
return max(h_mins_) # Maximum h_min

Define the given design parameters in a dictionary:

70 Chapter 4

alpha = sp.symbols("alpha", positive=True)
design_parameters = {

T: 81e3, C: 81e3, PA: 50e3, PD: 50e3, alpha: 5,
} # Forces in N
Gamma = [le3, 2e3, 4e3, 8e3, 16e3]

Loop through the L loads, running truss_designer ():

h_mins_w = []
L = sp.symbols("L", positive=True)
for L_ in Gamma:
design_parameters[L] = L_
h_min = truss_designer(
h_mins, constraints_to_check, design_parameters
)
h_mins_w.append(h_min)
print (h_min)

0.0308789086390917*w
0.0618463369994117*w
0.124408521678431*w
0.254802914503365*w
0.56790458868584*w

Convert these symbolic expressions into numerically evaluable function, as
follows:
h_min_funs = []
for h_min in h_mins_w:
h_min_funs.append(
sp.lambdify([w], h_min, modules=np)
)

Plot the design curves as follows:

w_ = np.linspace(l, 20, 101)

fig, ax, = plt.subplots()

for ih, h_min_fun in enumerate(h_min_funs):
ax.semilogy(2+w_, h_min_fun(w_), label=f"L = {Gammal[ih]}")

ax.set_xlabel (f"width $2w$ (m)")

ax.set_ylabel(f"height h (m)")

ax.grid()

ax.legend()

plt.show()

Symbolic Analysis

height i (m)

10!

100

107!

71

L —

= L =1000.0
——= L =2000.0
= L =4000.0
- L =28000.0
= L =16000.0

5 10 15 20 25 30 35 40

width 2w (m)

Figure 54.2. Truss design curve.

