
64 Chapter 4

sol = sp.solve(S, [w, x, y, z], dict=True)
print(sol)

[{w: 564/85, x: 773/85, y: 14/85, z: -411/85}]

Problem 4.5 LINK49 You are designing the truss structure shown in figure 4.6,
which is to support the hanging of an external load f� =− 5� ĵ, where 5� > 0. Your
organization plans to offer customers the following options:

• Any width (i.e., 2F)
• A selection of maximum load magnitudes != 5�/
 ∈ Γ, where Γ=

{1 kN, 2 kN, 4 kN, 8 kN, 16 kN}, and where
 is the factor of safety
As the designer, you are to develop a design curve for the dimension ℎ versus

half-width F for each maximum load ! ∈ Γ, under the following design constraints:
• Minimize the dimension ℎ

• The tension in all members is no more than a given)

• The compression in all members is no more than a given �

• The magnitude of the support force at pin A is no more than a given %�

• The magnitude of the support force at pin D is no more than a given %�

Use a static analysis and the method of joints to develop a solution for the force
in each member ���, ��� , etc., and the reaction forces using the sign convention
that tension is positive and compression is negative. Create a Python function that
returns ℎ as a function of F for a given set of design parameters {), �, %� , %� ,
, !}.
Use the function to create a design curve ℎ versus 2F for each ! ∈ Γ, maximum
tension) = 81 kN, maximum compression � = 81 kN, maximum support A load
%� = 50 kN, maximum support D load %� = 50 kN, and a factor of safety of
= 5.

A

B

C D

F F

ℎ

f�

G

H

�

Figure 4.6. A truss with pinned joints, supported by a hinge and a floating support,
with an applied load f� .

Solution 4.5 LINK49

https://engineering-computing.ricopic.one/49
https://engineering-computing.ricopic.one/49

Symbolic Analysis 65

Import Packages {-}

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt

Static Analysis Using themethod of joints, we proceed through the joints, summing
forces in the G- and H-directions. We will assume all members are in tension, and
their sign will be positive if this is the case and negative, otherwise. Beginning with
joint A, which includes one reaction force '� from the support,

Σ�G = 0; ��� + ��� cos�= 0 (4.1)

Σ�H = 0; '� + ��� sin�= 0. (4.2)

The angle � is known in terms of the dimensions F and ℎ as

�= arctan
ℎ

F
.

These equations can be encode symbolically as follows:

RA, FAB, FAC, theta= sp.symbols(
"RA, FAB, FAC, theta", real=True

)
h, w = sp.symbols("h, w", positive=True)
eqAx = FAC + FAB*sp.cos(theta)
eqAy = RA + FAB*sp.sin(theta)
theta_wh = sp.atan(h/w)

Proceeding to joint B,

Σ�G = 0; −��� cos�+ ��� cos�= 0 (4.3)

Σ�H = 0; −��� sin�− ��� sin�− ��� = 0. (4.4)

Encoding these equations,

FBD, FBC = sp.symbols("FBD, FBC", real=True)
eqBx = -FAB*sp.cos(theta) + FBD*sp.cos(theta)
eqBy = -FAB*sp.sin(theta) - FBD*sp.sin(theta) - FBC

For joint C, there is an externally applied force f� , so the analysis proceeds as
follows:

Σ�G = 0; −��� + ��� = 0 (4.5)

Σ�H = 0; ��� − 5� = 0. (4.6)

Encoding these equations,

66 Chapter 4

FCD = sp.symbols("FCD", real=True)
fC = sp.symbols("fC", positive=True)
eqCx = -FAC + FCD
eqCy = FBC - fC

For joint D, the pinned reaction forces '�G and '�H are present, so the analysis
proceeds as follows:

Σ�G = 0; −��� − ��� cos�+'�G = 0 (4.7)

Σ�H = 0; ��� sin�+'�H = 0. (4.8)

Encoding these equations,

RDx, RDy = sp.symbols("RDx, RDy", real=True)
eqDx = -FCD - FBD*sp.cos(theta) + RDx
eqDy = FBD*sp.sin(theta) + RDy

In total, we have 8 force equations and 8 unknown forces (5 member forces and 3
reaction forces). Let’s construct the system and solve it for the unkown forces, as
follows:

S_forces = [
eqAx, eqAy, eqBx, eqBy, eqCx, eqCy, eqDx, eqDy

] # 8 force equations
member_forces = [FAB, FAC, FBC, FBD, FCD] # 5 member forces
reaction_forces = [RA, RDx, RDy] # 3 reaction forces
forces_unknown = member_forces + reaction_forces # 8 unkown forces
sol_forces = sp.solve(S_forces, forces_unknown, dict=True); sol_forces

[{FAB: -fC/(2*sin(theta)),
FAC: fC*cos(theta)/(2*sin(theta)),
FBC: fC,
FBD: -fC/(2*sin(theta)),
FCD: fC*cos(theta)/(2*sin(theta)),
RA: fC/2,
RDx: 0,
RDy: fC/2}]

This solution is in terms of 5� and �. Because F and ℎ are our design parameters,
let’s substitute eqtheta such that our solution is rewritten in terms of 5� , F, and ℎ.
Create a list of solutions as follows:

Symbolic Analysis 67

forces_wh = {} # Initialize
for force in forces_unknown:

force_wh = force.subs(
sol_forces[0]

).subs(
theta, theta_wh

).simplify()
forces_wh[force] = force_wh
print(f"{force} = {force_wh}")

FAB = -fC*sqrt(h**2 + w**2)/(2*h)
FAC = fC*w/(2*h)
FBC = fC
FBD = -fC*sqrt(h**2 + w**2)/(2*h)
FCD = fC*w/(2*h)
RA = fC/2
RDx = 0
RDy = fC/2

Define the constraints as follows:

C, T, PA, PD = sp.symbols("C, T, PA, PD", positive=True)
member_constraints = {"Tension": T, "Compression": C}
reaction_constraints = {

PA: (RA, 0),
PD: (RDx, RDy)

} # Max magnitude: (x force, y force)

Define a function that encodes the constraints as a list of expressions that must
be nonnegative.

68 Chapter 4

def get_force_constraints(
forces: dict,
member_forces: list,
member_constraints: dict,
reaction_constraints: dict,

):
"""Returns a list of expressions that must be nonnegative

Args:
- forces: Force solutions {force symbol: solution}
- member_forces: List of member symbols [FAB, FAC ...]
- member_constraints:

{"Tension": max tension, "Compression": max compression}
- reaction_constraints:

{max force symbol: (max x force, max y force)}
"""
force_constraints = []
Append member constraints
for f_name, f_value in forces.items():
if f_name in member_forces:

if f_value > 0: # Tension
force_constraints.append(

member_constraints["Tension"] - f_value
)

elif f_value < 0: # Compression
force_constraints.append(

member_constraints["Compression"] + f_value
)

Append reaction constraints
for constraint, pair in reaction_constraints.items():
force_constraints.append(

constraint - sp.sqrt(pair[0]**2 + pair[1]**2).subs(forces_wh)
)

return force_constraints

Now apply the function:

constraints = get_force_constraints(
forces_wh, member_forces, member_constraints, reaction_constraints

)
print(constraints)

[C - fC*sqrt(h**2 + w**2)/(2*h), T - fC*w/(2*h), T - fC, C -
fC*sqrt(h**2 + w**2)/(2*h), T - fC*w/(2*h), PA - fC/2, PD - fC/2]↩→

At this point, we can solve for ℎ in each expression that includes ℎ. Because these
constraints are to be nonnegative, solving with equality gives the minimum ℎmin.

Symbolic Analysis 69

Expressions that don’t include ℎ must still be checked. We can use this opportunity
to sort the constraint expressions into those that involve ℎ and those that do not.

h_mins = []
constraints_to_check = []
for constraint in constraints:

if h in constraint.free_symbols:
Solve for h
h_min_sol = sp.solve(constraint, h)
for h_min in h_min_sol:

h_mins.append(h_min)
else:

constraints_to_check.append(constraint)

Inspect the h_mins and constraints_to_check:

print(f"Min h solutions: {h_mins}")
print(f"Constraints to be checked: {constraints_to_check}")

Min h solutions: [fC*w*sqrt(1/(2*C - fC))/sqrt(2*C + fC), fC*w/(2*T),
fC*w*sqrt(1/(2*C - fC))/sqrt(2*C + fC), fC*w/(2*T)]↩→

Constraints to be checked: [T - fC, PA - fC/2, PD - fC/2]

Finally, define a function to design the truss:

def truss_designer(
h_mins: list,
constraints_to_check: list,
design_params: dict,

):
"""Returns an expression for h(w) using the design parameters provided
"""
L = sp.symbols("L", positive=True)
alpha = sp.symbols("alpha", positive=True)
for constraint in constraints_to_check:

constraint_ = constraint.subs(fC, L*alpha).subs(design_params)
if constraint_ < 0:

raise Exception(
f"Design failed for constraint: {constraint} < 0"

)
h_mins_ = []
for h_min in h_mins:

h_mins_.append(h_min.subs(fC, L*alpha).subs(design_params))
return max(h_mins_) # Maximum h_min

Define the given design parameters in a dictionary:

70 Chapter 4

alpha = sp.symbols("alpha", positive=True)
design_parameters = {

T: 81e3, C: 81e3, PA: 50e3, PD: 50e3, alpha: 5,
} # Forces in N
Gamma = [1e3, 2e3, 4e3, 8e3, 16e3]

Loop through the L loads, running truss_designer():

h_mins_w = []
L = sp.symbols("L", positive=True)
for L_ in Gamma:

design_parameters[L] = L_
h_min = truss_designer(
h_mins, constraints_to_check, design_parameters

)
h_mins_w.append(h_min)
print(h_min)

0.0308789086390917*w
0.0618463369994117*w
0.124408521678431*w
0.254802914503365*w
0.56790458868584*w

Convert these symbolic expressions into numerically evaluable function, as
follows:

h_min_funs = []
for h_min in h_mins_w:

h_min_funs.append(
sp.lambdify([w], h_min, modules=np)

)

Plot the design curves as follows:

w_ = np.linspace(1, 20, 101)
fig, ax, = plt.subplots()
for ih, h_min_fun in enumerate(h_min_funs):

ax.semilogy(2*w_, h_min_fun(w_), label=f"L = {Gamma[ih]}")
ax.set_xlabel(f"width $2w$ (m)")
ax.set_ylabel(f"height h (m)")
ax.grid()
ax.legend()
plt.show()

Symbolic Analysis 71

5 10 15 20 25 30 35 40

width 2F (m)

10−1

100

101

h
ei
g
h
t
ℎ
(m

)

L = 1000.0

L = 2000.0

L = 4000.0

L = 8000.0

L = 16000.0

Figure S4.2. Truss design curve.

