
Symbolic Analysis 71

5 10 15 20 25 30 35 40

width 2F (m)

10−1

100

101

h
ei
g
h
t
ℎ
(m

)

L = 1000.0

L = 2000.0

L = 4000.0

L = 8000.0

L = 16000.0

Figure S4.2. Truss design curve.

Problem 4.6 LINKW5 Consider an LTI system modeled by the state equation of the
state-space model, equation (4.24a). A steady state of a system is defined as the state
vector x(C) after the effects of initial conditions have become relatively small. For a
constant input u(C)= u, the constant state x toward which the system’s response
decays can be found by setting the time derivative vector x′(C)= 0.
Write a Python function steady_state() that accepts the following arguments:
• A: A symbolic matrix representing �
• B: A symbolic matrix representing �
• u_const: A symbolic vector representing u

The function should return x_const, a symbolic vector representing x.
The steady-state output converges to y the corresponding output equation

of the state-space model, equation (4.24b). Write a second Python function
steady_output() that accepts the following arguments:
• C: A symbolic matrix representing �
• D: A symbolic matrix representing �
• u_const: A symbolic vector representing u
• x_const: A symbolic vector representing x

This function should return y_const, a symbolic vector representing y.
Apply steady_state() and steady_output() to the state-space model of the

circuit shown in figure 4.7, which includes a resistor with resistance ', an inductor
with inductance !, and capacitor with capacitance �. The LTI system is represented
by equation (4.24) with state, input, and output vectors

https://engineering-computing.ricopic.one/w5

72 Chapter 4

x(C)=
[
E�(C)
8!(C)

]
, u(C)=

[
+(

]
, y(C)=

[
E�(C)
E!(C)

]
and the following matrices:

�=

[
0 1/�
−1/! −'/!

]
, �=

[
0

1/!

]
, � =

[
1 0
−1 −'

]
, � =

[
0
1

]
.

Furthermore, let the constant input vector be

u =
[
+(

]
,

for constant +(.

+
−+((C)

' !

�

Figure 4.7. An RLC circuit with a voltage source +((C).

Solution 4.6 LINKW5 A constant steady-state, x′= 0 implies, from the state equa-
tion (4.24a),

0=�x + �u⇒ (4.9)

x =−�−1�u. (4.10)

We are now ready to define steady_state() as follows:

def steady_state(A, B, u_const):
"""Returns the symbolic constant steady state vector"""
A = sp.Matrix(A) # In case A isn't symbolic
B = sp.Matrix(B) # In case B isn't symbolic
u_const = sp.Matrix(u_const) # In case u_const isn't symbolic
x_const = -A**-1 * B * u_const
return x_const

The state-space output equation equation (4.24b) is already solved for the output,
so we are ready to write steady_output() as follows:

https://engineering-computing.ricopic.one/w5

Symbolic Analysis 73

def steady_output(C, D, u_const, x_const):
"""Returns the symbolic constant steady-state output vector"""
C = sp.Matrix(C) # In case C isn't symbolic
D = sp.Matrix(D) # In case D isn't symbolic
u_const = sp.Matrix(u_const) # In case u_const isn't symbolic
x_const = sp.Matrix(x_const) # In case x_const isn't symbolic
y_const = C*x_const + D*u_const
return y_const

Apply these functions to the given state-space model. First, define the symbolic
variables as follows:

R, L, C1 = sp.symbols("R, L, C1", positive=True)
VS_ = sp.symbols("VS_", real=True) # Constant voltage source input

Now define the system and the constant input as follows:

A = sp.Matrix([[0, 1/C1], [-1/L, -R/L]]) # �

B = sp.Matrix([[0], [1/L]]) # �

C = sp.Matrix([[1, 0], [-1, -R]]) # �

D = sp.Matrix([[0], [1]]) # �

u_const = sp.Matrix([[VS_]]) # u

Find the constant steady state x as follows:

x_const = steady_state(A, B, u_const)
print(x_const)[

+(

0

]
Find the constant steady-state output y as follows:

y_const = steady_output(C, D, u_const, x_const)
print(y_const)[

+(

0

]
Problem 4.7 LINK8U Consider the electromechanical schematic of a direct current
(DC)motor shown in figure 4.8. A voltage source+((C)provides power, the armature
winding loses some energy to heat through a resistance ' and stores some energy
in a magnetic field due to its inductance !, which arises from its coiled structure. An
electromechanical interaction through the magnetic field, shown as M, has torque
constant C and induces a torque on themotor shaft, which is supported by bearings
that lose some energy to heat via a damping coefficient �. The rotor’s mass has
rotational moment of inertia �, which stores kinetic energy. We denote the voltage
across an element with E, the current through an element with 8, the angular velocity
across an element with Ω, and the torque through an element with).

https://engineering-computing.ricopic.one/8u

74 Chapter 4

For a given input voltage and initial conditions, the following vector-valued
functions have been solved for:

L =



∫ C

0
E'(C) 3C∫ C

0
E!(C) 3C∫ C

0
Ω�(C) 3C∫ C

0
Ω�(C) 3C


=


exp(−C)
exp(−C)

1− exp(−C)
1− exp(−C)

 , M=



∫ C

0
8'(C) 3C∫ C

0
8!(C) 3C∫ C

0
)�(C) 3C∫ C

0
)�(C) 3C


=


exp(−C)
exp(−C)

1− exp(−C)
exp(−C)


The instantaneous power lossed or stored by each element is given by the following
vector of products:

P(C)=


E'(C)8'(C)
E!(C)8!(C)
Ω�(C))�(C)
Ω�(C))�(C)

 .
The energy ℰ(C) of the elements, then, is

E(C)=
∫ C

0
P(C)3C.

Write a program that satisfies the following requirements:

a. It defines a function power(F, G) that returns the symbolic power vector
P(C) from any inputs L and M

b. It defines a function energy(F, G) that returns the symbolic energy E(C)
from any inputs L and M (energy() should call power())

c. It tests the energy() on the specific L and M given above

+
−+((C)

' !

M

�

�

Ω

Electrical Mechanical

Figure 4.8. An electromechanical schematic of a DC motor.

Solution 4.7 LINK8U The formula for the power of each element is given, so we are
ready to define power() as follows:

https://engineering-computing.ricopic.one/8u

Symbolic Analysis 75

def power(F, G):
"""Returns the power for vectors F and G"""
F = sp.Matrix(F) # In case F isn't symbolic
G = sp.Matrix(G) # In case G isn't symbolic
P = F.multiply_elementwise(G)
Alternative using a for loop:
P = sp.zeros(*F.shape) # Initialize
for i, Fi in enumerate(F):
P[i] = Fi * G[i]
return P

The formula for the energy stored or dissipated by each element is given, so we
are ready to write energy() as follows:

def energy(F, G):
"""Returns the energy stored for vectors F and G"""
P = power(F, G)
E = sp.integrate(P, (t, 0, t))
return E

Apply these functions to the given L and M. First, define L and M as follows:

t = sp.symbols("t", real=True)
F = sp.Matrix([

[sp.exp(-t)],
[sp.exp(-t)],
[1 - sp.exp(-t)],
[1 - sp.exp(-t)]

])
G = sp.Matrix([

[sp.exp(-t)],
[sp.exp(-t)],
[1 - sp.exp(-t)],
[sp.exp(-t)]

])

Now compute the energy:

E = energy(F, G).simplify()
print(E)

1
2 − 4−2C

2
1
2 − 4−2C

2
C − 3

2 + 24−C − 4−2C

2
1
2 − 4−C + 4−2C

2



