Test the new features of the Screwdriver, Screw, and MetricScrew classes with the following steps:

- a. Create an instance ms1 of MetricScrew with right-handedness, a flat head, initial angle 0 rad, and thread pitch 2 mm (corresponding to an M14 metric screw)
- b. Create an instance sd1 of Screwdriver with a flat head
- c. Turn the ms1 screw 5 complete *clockwise*revolutions with the sd1 screwdriver and print the resulting angle and depth of ms1
- d. Turn the ms1 screw 3 complete *counterclockwise* revolutions with the sd1 screwdriver and print the resulting angle and depth of ms1
- e. Create an instance ms2 of MetricScrew that is the same as ms1, but with *left*-handedness
- f. Turn the ms2 screw 4 complete *counterclockwise* revolutions with the sd1 screwdriver and print the resulting angle and depth of ms2
- g. Turn the ms2 screw 2 complete *clockwise*revolutions with the sd1 screwdriver and print the resulting angle and depth of ms2
- h. Create an instance sd2 of Screwdriver with a hex head and try to turn the sd1 screw and catch and print the exception

Solution 2.5 WIZ Load the NumPy package:

import numpy as np

Define Classes The following Screwdriver class meets the requirements:

```
class Screwdriver:
   """Represents a screwdriver tool"""
   operates on = "Screw" # Class data attributes
   operated_by = "Hand"
   def __init__(self, head, length):
       self.head = head # Instance data attributes
       self.length = length
   def drive(self, screw, angle): # Method definition
       """Returns a screw object turned by the given angle"""
       if screw.head != self.head:
           raise TypeError(f"{self.head} screwdriver "
               f"can't turn a {screw.head} screw.")
       screw.turn(angle)
       return screw
```
The following Screw class meets the requirements:

```
class Screw:
    """Represents a screw fastener"""
    def __init__(self, head, pitch, depth=0, angle=0, handed="Right"):
       self.head = head
        self.pitch = pitch
        self.dephh = depthself.angle = angleself.handed = handed
    def turn(self, angle):
        """Mutates angle and depth for a turn of angle rad"""
        if self.handed == "Right":
            handed sign = 1else:
            handed sign = -1self.angle += angle
        self.depth += handed_sign * self.pitch * angle / (2*np.pi)
```
The following MetricScrew class meets the requirements:

```
class MetricScrew(Screw):
   """Represents a metric screw fastener"""
   kind = "Metric"
    # No constructor necessary because we aren't
    # changing instance attributes
```
Test the New Features Create a MetricScrew instance as follows:

```
ms1 = MetricServer(head="Flat", pitch=2)
```
Create a flathead screwdriver instance:

```
sd1 = Screwdriver(head="Flat", length=6)
```
Turn the screw 5 complete clockwise revolutions with the screwdriver and print the resulting angle and depth as follows:

```
sd1.drive(ms1, 5*2*np.pi)
print(f"Angle: {ms1.angle:.3g} rad \nDepth: {ms1.depth} mm")
\rightarrow <__main__.MetricScrew at 0x11d678750>
  Angle: 31.4 rad
  Depth: 10.0 mm
```
Turn the screw 3 complete counterclockwise revolutions with the screwdriver and print the resulting angle and depth as follows:

```
sd1.drive(ms1, -3*2*np.pi)
print(f"Angle: {ms1.angle:.3g} rad \nDepth: {ms1.depth} mm")
\rightarrow <__main__.MetricScrew at 0x11d678750>
```

```
Angle: 12.6 rad
  Depth: 4.0 mm
 Create a left-handed MetricScrew instance as follows:
ms2 = MetricScrew(head="Flat", pitch=2, handed="Left")
```
Turn the ms2 screw 4 complete counterclockwise revolutions with the sd1 screwdriver and print the resulting angle and depth of ms2 as follows:

```
sd1.drive(ms2, -3*2*np.pi)
print(f"Angle: {ms2.angle:.3g} rad \nDepth: {ms2.depth} mm")
\rightarrow <__main__.MetricScrew at 0x11d67a1d0>
  Angle: -18.8 rad
  Depth: 6.0 mm
```
Turn the ms2 screw 2 complete clockwise revolutions with the sd1 screwdriver and print the resulting angle and depth of ms2 as follows:

```
sd1.drive(ms2, 2*2*np.pi)
print(f"Angle: {ms2.angle:.3g} rad \nDepth: {ms2.depth} mm")
<__main__.MetricScrew at 0x11d67a1d0>
  Angle: -6.28 rad
  Depth: 2.0 mm
```
Create an instance sd2 of Screwdriver with a hex head and try to turn the sd1 screw and catch and print the exception as follows:

```
sd2 = Screwdriver(head="Hex", length=6)
try:
   sd2.drive(ms1, 1) # Should raise an exception
except Exception as err:
   print(f"Unexpected {type(err)}: {err}") # Print the exception
 Unexpected <class 'TypeError'>: Hex screwdriver can't turn a Flat
  ↩→ screw.
```
Problem 2.6 W_{[VX](https://engineering-computing.ricopic.one/vx)} Improve the bubble sort algorithm of algorithm 1 by adding a test that can return the list if it is sorted before completing all the loops. Implement the improved bubble sort algorithm in a program that it meets the following requirements:

- a. It defines a function bubble_sort(1: list) \rightarrow list that implements the bubble sort algorithm.
- b. It demonstrates the bubble_sort() function works on three different lists of numbers.

```
t = sp.symbols("t", real=True)F = sp.Matrix([[sp.exp(-t)],
 [sp.exp(-t)],
 [1 - sp. exp(-t)],[1 - sp. exp(-t)]])
G = sp.Matrix([[sp.exp(-t)],[sp.exp(-t)],[1 - sp. exp(-t)],[sp.exp(-t)]
])
```
Now compute the energy:

```
E = energy(F, G) . simplify()print(E)
                        \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}Ì
                              \frac{1}{2} - \frac{e^{-2t}}{2}<br>
t - \frac{3}{2} + 2e^{-t} - \frac{e^{-2t}}{2}<br>
\frac{1}{2} - e^{-t} + \frac{e^{-2t}}{2}\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}Í
```
Problem 4.8 \circledast [FJ](https://engineering-computing.ricopic.one/fj) For the circuit and state-space model given in problem 4.6, use SymPy to solve for $x(t)$ and $y(t)$ given the following:

- A constant input voltage $V_S(t) = \overline{V_S}$
- Initial condition $x(0)=0$

Substitute the following parameters into the solution for $y(t)$ and create numerically evaluable functions of time for each variable in $\mathbf{y}(t)$:

$$
R = 50 \Omega, L = 10 \cdot 10^{-6} \text{ H}, C = 1 \cdot 10^{-9} \text{ F}, \overline{V_S} = 10 \text{ V}.
$$

Plot the outputs in $y(t)$ as functions of time, making sure to choose a range of time over which the response is best presented. *Hint:* An appropriate amount of time is on the scale of microseconds.

Solution 4.8 O[FJ](https://engineering-computing.ricopic.one/fj) Load packages:

import numpy as np import sympy as sp import matplotlib.pyplot as plt

Define Classes We begin by defining the parameters and functions of time as SymPy symbolic variables and unspecified functions as follows:

```
R, L, C = sp.symbols("R, L, C", positive=True)v_C, i_L, v_L, V_S = sp.symbols(
   v_c, i_L, v_L, V_S", cls=sp. Function, real=True
) \# v_C, i_L, V_St = sp.symbols("t", real=True)
```
Now we can form the symbolic matrices and vectors:

```
A_ = sp. Matrix([0, 1/C], [-1/L, -R/L]) # A
B_ = sp. Matrix([0], [1/L]) # BC_ = sp. Matrix([1, 0], [-1, -R]) # CD_ = sp. Matrix([0], [1]) # Dx = sp.Matrix([[v_C(t)], [i_L(t)]]) # xu = sp.Matrix([[V_S(t)]]) # uy = sp.Matrix([[v_C(t)], [v_L(t)]]) # y
```
The input and initial conditions can be encoded as follows:

 u subs = { $V_S(t): 10$ } ics = $\{v_C(0): 0, i_L(0): 0\}$

The set of first-order ODEs comprising the state equation can be defined as follows:

```
odes = x.diff(t) - A_*x - B_*uprint(odes)
      \int_{d} \frac{d}{dt} v_C(t) - \frac{i_L(t)}{C}\frac{d}{dt}i_L(t) + \frac{Ri_L(t)}{L} - \frac{V_S(t)}{L} + \frac{v_C(t)}{L}1
```

```
x\_sol = sp.dsolve(list(odes.subs(u\_subs)), list(x),ics=ics)
```
The symbolic solutions for $x(t)$ are lengthy expressions, so we don't print them here. Now we can compute the output $\psi(t)$ from equation (4.24b) as follows:

```
x_sol_dict = {} # Initialize
for eq in x sol:
    x_sol_dict[eq.lhs] = eq.rhs # Make a dict of solutions for subs
y_sol = (C_{*}x + D_{*}u).subs(x_sol_dict) # Subs into output equation
# We will graph the output for the following set of parameters:
params = fR: 50, # (Ohms)
   L: 10e-6, # (H)C: 1e-9, # (F)}
```
Create a numerically evaluable version of each function as follows:

```
v_C = spu2ambdiry(t, y_sol[0].subs(params).subs(u_subs), modules="numpy"
)
v_L = spu. lambdify(
    t, y_sol[1].subs(params).subs(u_subs), modules="numpy"
)
```
Graph each solution as follows:

```
t_{-} = np.linspace(0, 0.000002, 201)
fig, axs = plt.subplots(2, sharex=True)axis[0].plot(t_, v_C(t_))axis[1].plot(t_, v_L(t_))axs[1].set_xlabel("Time (s)")
\texttt{axis[0].set_ylabel("$v_C(t)$ ($\texttt{rad/s})$")}axis[1].set_ylabel("$v_L(t)$ (A)")plt.show()
```


The output equation is trivial in this case, yielding only the state variable $\Omega_{I}(t)$, for which we have already solved. Therefore, we have completed the analysis.