
22 Chapter 2

Test the new features of the Screwdriver, Screw, and MetricScrew classes with
the following steps:

a. Create an instance ms1 of MetricScrew with right-handedness, a flat head,
initial angle 0 rad, and thread pitch 2 mm (corresponding to an M14 metric
screw)

b. Create an instance sd1 of Screwdriver with a flat head
c. Turn the ms1 screw 5 complete clockwise revolutionswith the sd1 screwdriver

and print the resulting angle and depth of ms1
d. Turn the ms1 screw 3 complete counterclockwise revolutions with the sd1

screwdriver and print the resulting angle and depth of ms1
e. Create an instance ms2 of MetricScrew that is the same as ms1, but with

left-handedness
f. Turn the ms2 screw 4 complete counterclockwise revolutions with the sd1

screwdriver and print the resulting angle and depth of ms2
g. Turn the ms2 screw 2 complete clockwise revolutionswith the sd1 screwdriver

and print the resulting angle and depth of ms2
h. Create an instance sd2 of Screwdriver with a hex head and try to turn the

sd1 screw and catch and print the exception

Solution 2.5 LINKUZ Load the NumPy package:

import numpy as np

Define Classes The following Screwdriver class meets the requirements:

class Screwdriver:
"""Represents a screwdriver tool"""
operates_on = "Screw" # Class data attributes
operated_by = "Hand"

def __init__(self, head, length):
self.head = head # Instance data attributes
self.length = length

def drive(self, screw, angle): # Method definition
"""Returns a screw object turned by the given angle"""
if screw.head != self.head:

raise TypeError(f"{self.head} screwdriver "
f"can't turn a {screw.head} screw.")

screw.turn(angle)
return screw

The following Screw class meets the requirements:

https://engineering-computing.ricopic.one/uz

The Structure, Style, and Design of Programs 23

class Screw:
"""Represents a screw fastener"""
def __init__(self, head, pitch, depth=0, angle=0, handed="Right"):

self.head = head
self.pitch = pitch
self.depth = depth
self.angle = angle
self.handed = handed

def turn(self, angle):
"""Mutates angle and depth for a turn of angle rad"""
if self.handed == "Right":

handed_sign = 1
else:

handed_sign = -1
self.angle += angle
self.depth += handed_sign * self.pitch * angle / (2*np.pi)

The following MetricScrew class meets the requirements:

class MetricScrew(Screw):
"""Represents a metric screw fastener"""
kind = "Metric"
No constructor necessary because we aren't
changing instance attributes

Test the New Features Create a MetricScrew instance as follows:
ms1 = MetricScrew(head="Flat", pitch=2)

Create a flathead screwdriver instance:

sd1 = Screwdriver(head="Flat", length=6)

Turn the screw 5 complete clockwise revolutions with the screwdriver and print
the resulting angle and depth as follows:

sd1.drive(ms1, 5*2*np.pi)
print(f"Angle: {ms1.angle:.3g} rad \nDepth: {ms1.depth} mm")

<__main__.MetricScrew at 0x11d678750>

Angle: 31.4 rad
Depth: 10.0 mm

Turn the screw 3 complete counterclockwise revolutions with the screwdriver
and print the resulting angle and depth as follows:

sd1.drive(ms1, -3*2*np.pi)
print(f"Angle: {ms1.angle:.3g} rad \nDepth: {ms1.depth} mm")

<__main__.MetricScrew at 0x11d678750>

24 Chapter 2

Angle: 12.6 rad
Depth: 4.0 mm

Create a left-handed MetricScrew instance as follows:
ms2 = MetricScrew(head="Flat", pitch=2, handed="Left")

Turn the ms2 screw 4 complete counterclockwise revolutions with the sd1
screwdriver and print the resulting angle and depth of ms2 as follows:

sd1.drive(ms2, -3*2*np.pi)
print(f"Angle: {ms2.angle:.3g} rad \nDepth: {ms2.depth} mm")

<__main__.MetricScrew at 0x11d67a1d0>

Angle: -18.8 rad
Depth: 6.0 mm

Turn the ms2 screw 2 complete clockwise revolutions with the sd1 screwdriver
and print the resulting angle and depth of ms2 as follows:

sd1.drive(ms2, 2*2*np.pi)
print(f"Angle: {ms2.angle:.3g} rad \nDepth: {ms2.depth} mm")

<__main__.MetricScrew at 0x11d67a1d0>

Angle: -6.28 rad
Depth: 2.0 mm

Create an instance sd2 of Screwdriver with a hex head and try to turn the sd1
screw and catch and print the exception as follows:

sd2 = Screwdriver(head="Hex", length=6)
try:

sd2.drive(ms1, 1) # Should raise an exception
except Exception as err:

print(f"Unexpected {type(err)}: {err}") # Print the exception

Unexpected <class 'TypeError'>: Hex screwdriver can't turn a Flat
screw.↩→

Problem 2.6 LINKVX Improve the bubble sort algorithm of algorithm 1 by adding
a test that can return the list if it is sorted before completing all the loops. Imple-
ment the improved bubble sort algorithm in a program that it meets the following
requirements:

a. It defines a function bubble_sort(l: list) -> list that implements the
bubble sort algorithm.

b. It demonstrates the bubble_sort() function works on three different lists
of numbers.

https://engineering-computing.ricopic.one/vx

Symbolic Analysis 79

t = sp.symbols("t", real=True)
F = sp.Matrix([

[sp.exp(-t)],
[sp.exp(-t)],
[1 - sp.exp(-t)],
[1 - sp.exp(-t)]

])
G = sp.Matrix([

[sp.exp(-t)],
[sp.exp(-t)],
[1 - sp.exp(-t)],
[sp.exp(-t)]

])

Now compute the energy:

E = energy(F, G).simplify()
print(E)

1
2 − 4−2C

2
1
2 − 4−2C

2
C − 3

2 + 24−C − 4−2C

2
1
2 − 4−C + 4−2C

2

Problem 4.8 LINKFJ For the circuit and state-space model given in problem 4.6, use
SymPy to solve for x(C) and y(C) given the following:
• A constant input voltage +((C)=+(

• Initial condition x(0)= 0
Substitute the following parameters into the solution for y(C) and create numeri-

cally evaluable functions of time for each variable in y(C):
'= 50 Ω, != 10 · 10−6 H, � = 1 · 10−9 F, +(= 10 V.

Plot the outputs in y(C) as functions of time, making sure to choose a range of
time over which the response is best presented. Hint: An appropriate amount of
time is on the scale of microseconds.

Solution 4.8 LINKFJ Load packages:

import numpy as np
import sympy as sp
import matplotlib.pyplot as plt

Define Classes Webegin by defining the parameters and functions of time as SymPy
symbolic variables and unspecified functions as follows:

https://engineering-computing.ricopic.one/fj
https://engineering-computing.ricopic.one/fj

80 Chapter 4

R, L, C = sp.symbols("R, L, C", positive=True)
v_C, i_L, v_L, V_S = sp.symbols(

"v_C, i_L, v_L, V_S", cls=sp.Function, real=True
) # E� , 8! , +(

t = sp.symbols("t", real=True)

Now we can form the symbolic matrices and vectors:

A_ = sp.Matrix([[0, 1/C], [-1/L, -R/L]]) # G
B_ = sp.Matrix([[0], [1/L]]) # H
C_ = sp.Matrix([[1, 0], [-1, -R]]) # I
D_ = sp.Matrix([[0], [1]]) # J
x = sp.Matrix([[v_C(t)], [i_L(t)]]) # x
u = sp.Matrix([[V_S(t)]]) # u
y = sp.Matrix([[v_C(t)], [v_L(t)]]) # y

The input and initial conditions can be encoded as follows:

u_subs = {V_S(t): 10}
ics = {v_C(0): 0, i_L(0): 0}

The set of first-order ODEs comprising the state equation can be defined as
follows:

odes = x.diff(t) - A_*x - B_*u
print(odes)[

3
3C
E�(C) − 8!(C)

�
3
3C
8!(C) + '8!(C)

! − +((C)
! +

E� (C)
!

]
x_sol = sp.dsolve(list(odes.subs(u_subs)), list(x), ics=ics)

The symbolic solutions for x(C) are lengthy expressions, so we don’t print them
here. Now we can compute the output y(C) from equation (4.24b) as follows:

x_sol_dict = {} # Initialize
for eq in x_sol:

x_sol_dict[eq.lhs] = eq.rhs # Make a dict of solutions for subs
y_sol = (C_*x + D_*u).subs(x_sol_dict) # Subs into output equation

We will graph the output for the following set of parameters:

params = {
R: 50, # (Ohms)
L: 10e-6, # (H)
C: 1e-9, # (F)

}

Create a numerically evaluable version of each function as follows:

Symbolic Analysis 81

v_C_ = sp.lambdify(
t, y_sol[0].subs(params).subs(u_subs), modules="numpy"

)
v_L_ = sp.lambdify(

t, y_sol[1].subs(params).subs(u_subs), modules="numpy"
)

Graph each solution as follows:

t_ = np.linspace(0, 0.000002, 201)
fig, axs = plt.subplots(2, sharex=True)
axs[0].plot(t_, v_C_(t_))
axs[1].plot(t_, v_L_(t_))
axs[1].set_xlabel("Time (s)")
axs[0].set_ylabel("$v_C(t)$ (rad/s)")
axs[1].set_ylabel("$v_L(t)$ (A)")
plt.show()

0

10

E
�
(C
)(
ra
d
/s
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s) 1e−6

0

10

E
!
(C
)(
A
)

Figure S4.4. The state response to a 10 V step input.

The output equation is trivial in this case, yielding only the state variable Ω�(C),
for which we have already solved. Therefore, we have completed the analysis.

