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of a member. If the load is increased, it is typical to assume that the principal stresses
will increase proportionally along the line from the origin through point a. Such a load
line is shown. If the stress situation increases along the load line until it crosses the
stress failure envelope, such as at point b, the MSS theory predicts that the stress ele-
ment will yield. The factor of safety guarding against yield at point a is given by the
ratio of strength (distance to failure at point b) to stress (distance to stress at point a),
that is n = Ob/Oa.

Note that the first part of Eq. (5–3), τmax = Sy/2n, is sufficient for design purposes
provided the designer is careful in determining τmax. For plane stress, Eq. (3–14) does
not always predict τmax. However, consider the special case when one normal stress is
zero in the plane, say σx and τxy have values and σy = 0. It can be easily shown that this
is a Case 2 problem, and the shear stress determined by Eq. (3–14) is τmax. Shaft design
problems typically fall into this category where a normal stress exists from bending
and/or axial loading, and a shear stress arises from torsion.

5–5 Distortion-Energy Theory for Ductile Materials
The distortion-energy theory predicts that yielding occurs when the distortion strain
energy per unit volume reaches or exceeds the distortion strain energy per unit volume
for yield in simple tension or compression of the same material.

The distortion-energy (DE) theory originated from the observation that ductile
materials stressed hydrostatically (equal principal stresses) exhibited yield strengths
greatly in excess of the values given by the simple tension test. Therefore it was postu-
lated that yielding was not a simple tensile or compressive phenomenon at all, but,
rather, that it was related somehow to the angular distortion of the stressed element.
To develop the theory, note, in Fig. 5–8a, the unit volume subjected to any three-
dimensional stress state designated by the stresses σ1, σ2, and σ3. The stress state shown
in Fig. 5–8b is one of hydrostatic normal stresses due to the stresses σav acting in each
of the same principal directions as in Fig. 5–8a. The formula for σav is simply

σav =
σ1 + σ2 + σ3

3
(a )

Thus the element in Fig. 5–8b undergoes pure volume change, that is, no angular dis-
tortion. If we regard σav as a component of σ1, σ2, and σ3, then this component can be
subtracted from them, resulting in the stress state shown in Fig. 5–8c. This element is
subjected to pure angular distortion, that is, no volume change.
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Figure 5–7

The maximum-shear-stress
(MSS) theory yield envelope
for plane stress, where σA and
σB are the two nonzero
principal stresses.
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222 Mechanical Engineering Design

The strain energy per unit volume for simple tension is u = 1
2 . For the element

of Fig. 5–8a the strain energy per unit volume is u = 1
2 [ 1σ1 + 2σ2 + 3σ3].

Substituting Eq. (3–19) for the principal strains gives

u =
1

2E
σ2

1 + σ2
2 + σ2

3 − 2ν(σ1σ2 + σ2σ3 + σ3σ1) (b)

The strain energy for producing only volume change uv can be obtained by substitut-
ing σav for σ1, σ2, and σ3 in Eq. (b). The result is

uv =
3σ 2

av
2E

(1 − 2ν) (c)

If we now substitute the square of Eq. (a) in Eq. (c) and simplify the expression, we get

uv =
1 − 2ν

6E
σ 2

1 + σ 2
2 + σ 2

3 + 2σ1σ2 + 2σ2σ3 + 2σ3σ1 (5–7)

Then the distortion energy is obtained by subtracting Eq. (5–7) from Eq. (b). This
gives

ud = u − uv =
1 + ν
3E

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
(5–8)

Note that the distortion energy is zero if σ1 = σ2 = σ3.
For the simple tensile test, at yield, σ1 = Sy and σ2 = σ3 = 0, and from Eq. (5–8)

the distortion energy is

ud =
1 + ν
3E

S2
y (5–9)

So for the general state of stress given by Eq. (5–8), yield is predicted if Eq. (5–8)
equals or exceeds Eq. (5–9). This gives

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2

1/2

≥ Sy (5–10)

If we had a simple case of tension σ , then yield would occur when σ ≥ Sy . Thus, the
left of Eq. (5–10) can be thought of as a single, equivalent, or effective stress for the
entire general state of stress given by σ1, σ2, and σ3. This effective stress is usually

Figure 5–8

(a) Element with triaxial stresses; this element undergoes both volume
change and angular distortion. (b) Element under hydrostatic normal
stresses undergoes only volume change. (c) Element has angular
distortion without volume change.
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Failures Resulting from Static Loading 223

called the von Mises stress, σ , named after Dr. R. von Mises, who contributed to the
theory. Thus Eq. (5–10), for yield, can be written as 

σ ≥ Sy (5–11) 

where the von Mises stress is

σ =
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2

1/2

(5–12)

For plane stress, the von Mises stress can be represented by the principal stresses
σA, σB , and zero. Then from Eq. (5–12), we get

σ = σ 2
A − σAσB + σ 2

B
1/2

(5–13)

Equation (5–13) is a rotated ellipse in the σA, σB plane, as shown in Fig. 5–9 with
σ = Sy . The dotted lines in the figure represent the MSS theory, which can be seen to
be more restrictive, hence, more conservative.4

Using xyz components of three-dimensional stress, the von Mises stress can be
written as

σ =
1
√

2
(σx − σy)2 + (σ y − σz)2 + (σz − σx )2 + 6 τ 2

xy + τ 2
yz + τ 2

zx
1/2

(5–14)

and for plane stress,
σ = σ 2

x − σxσy + σ 2
y + 3τ 2

xy
1/2

(5–15)

The distortion-energy theory is also called:

• The von Mises or von Mises–Hencky theory
• The shear-energy theory
• The octahedral-shear-stress theory

Understanding octahedral shear stress will shed some light on why the MSS is conser-
vative. Consider an isolated element in which the normal stresses on each surface are

4The three-dimensional equations for DE and MSS can be plotted relative to three-dimensional σ1, σ2, σ3,
coordinate axes. The failure surface for DE is a circular cylinder with an axis inclined at 45° from each
principal stress axis, whereas the surface for MSS is a hexagon inscribed within the cylinder. See Arthur P.
Boresi and Richard J. Schmidt, Advanced Mechanics of Materials, 6th ed., John Wiley & Sons, New York,
2003, Sec. 4.4.

Figure 5–9

The distortion-energy (DE)
theory yield envelope for plane
stress states. This is a plot 
of points obtained from 
Eq. (5–13) with σ = Sy .
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