Shafts + shaft components: intro	017 1/1
A shaft is a rotating member, usually of circular cross	section,
used to transmit power or motion.	
It provides the axis of rotation, or oscillation, of e	lements
such as gears, pulleys, flywheels, cranks, sprock	kets, and
controls the geometry of their motion. (Budynas)	
An axle is a nonrotating member that carries no torgu	le
and is used to support rotating wheels, pullevs, a	and the like.
A nonrotating axle can readily be designed and	d analvzed
as a static beam (Budynas)	,
No pour opolucio to chaigu co millito a securizzada e succha	
No new analysis techniques will be required to analyz	ze and design
shafts. However, shafts are common enough to v	warrant a
special discussion.	
The following considerations are important for shaft d	lesign:
 Material selection 	
Geometric layout	
 Stress and strength 	
Static strength	
Fatigue strength	
 Deflection and rigidity 	
Bending deflection	
Torsional deflection	
Slope at bearings and shaft-supported elem	ients
Shear deflection due to transverse loading of	of short shafts
 Vibration due to natural frequency (Budynas) 	
We will generally follow the following two-step design	process:
1. size the shaft based on stress analysis of critic	cal points
and shaft-supported machine elements, and	3
2. analyze for deflection and iterate the design a	ccordinaly.