
Notes on Generalized Impedances  by J. L. Garbini 
 
Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.  
The table below lists the corresponding driving-point impedance definitions for five different energy modalities. 
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Series and parallel combinations of impedances and admittances can be combined.  In the following V and F 
represent the across and through variables respectively of any physical domain. 
 

Series Combination   Parallel Combination  

Elements sharing a 
common through variable 
are in series. 
 
The impedance of elements 
connected in series is the 
sum of the individual 
impedances. 
 
 

 

 
 
 

    Z1 = Z1 +Z2  

 Elements sharing a common 
across variable are in parallel. 
 
The admittance of elements 
connected in parallel is the 
sum of the individual 
admittances. 
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Simple transfer functions can be determined from impedance/admittance properties. 
 

Across Variable Divider    Through Variable Divider   

The complex amplitude of 
the across variable across a 
set of elements in series is 
divided among the 
elements in proportion 
their impedances. 
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 The complex amplitude of 
the through variable through 
a set of elements in parallel is 
divided among the elements 
in proportion their 
admittances. 
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Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that 
have a defined load impedance. 
 
 
Thevenin’s Theorem  
A linear two-terminal network is equivalent to an 
across variable source  Ve  in series with an equivalent 
impedance   Ze , where 
 
  Ze  = the impedance of the network with all sources set 

equal to zero, and 
 
  Ve  = an across variable source equal to the across 

variable that would appear across the open circuit 
terminals of the network.   

 

 

 
 
Norton’s Theorem  
A linear two-terminal network is equivalent to a 
through variable source  Fe  in parallel with an equivalent 
impedance   Ze , where 
 
  Ze  = the impedance of the network with all sources set 

equal to zero, and 
 
  Fe  = a through variable source equal to the through 

variable that would flow through the short 
circuited terminals of the network.   

 

 

 
 
Source Transformations  
 
Since any linear two-terminal networks can be 
represented by either a Thevenin equivalent or a 
Norton equivalent, the two representations must be 
equivalent to each other.   

  
Fe =

Ve
Ze

 

 
Note:  In both Thevenin and Norton networks the impedance   Ze  is determined by finding the impedance at the 
terminals with all of the sources set equal to zero.  The sources are set to zero, as follows: 
 
 -  Across Variable Source: Replace the across variable source with a short circuit.   

That is, the nodes to which the source is connected are joined together. 
   
 - Through Variable Source: Remove the through variable source from the network. 
 

Ze

Ve

Linear
Network

Linear
Network

Ve

Ze

Linear
Network

Linear
NetworkFe Fe

Ze

Ve
ZeFe



Measurement Loading 
 
Across Variable Measurements 
 
Suppose that we wish to measure an across variable at the output of 
a “device under test” with a “measurement instrument.”  The 
measurement instrument is attached across the terminals of interest.  
Of course we desired that the measured variable be undisturbed by 
the connection of the instrument.  That is, we want   Vm  to be as 
nearly equal to   Vo  as possible.  We say that the measurement 
instrument should not “load” the device under test. 
 
The output impedance of the device under test is the equivalent 
impedance defined by its Thevenin model   Zo = Ze  for the unloaded 
output (disconnected) terminals.  
 
Similarly, the input impedance   Zi of the measurement instrument is 
the Thevenin equivalent impedance defined for its input terminals.  

 
 

 

 
Connecting the Thevenin model for the device under test to the 
input impedance of the measurement instrument we have the 
network at the right. 
 
The Thevenin equivalent across variable source is by definition 
equal to   Vo , the value that we wish to measure.  Applying the across 

variable divider rule:  
    

Vm(s)
Vo(s)

=
1

1 +Zo Zi
.   

 
Since we desire that the ratio approach unity, the input impedance 
of the measurement instrument must be large in comparison with 
the output impedance of the device under test:    Zi >> Zo  

 
 
 
 

 

 
 
Through Variable Measurements 
 
Alternately, suppose that we wish to measure a through variable in 
a device under test with a measurement instrument.  In this case, the 
variable of interest flows through the measurement instrument.  We 
desired that the measured variable be undisturbed by the connection 
of the instrument.  That is, we want   Fm  to be as nearly equal to   Fo  as 
possible. 
 
The output admittance of the device under test is the equivalent 
admittance defined by its Norton’s  model     Yo = 1 Ze  for the 
unloaded (disconnected) output terminals.   
 
Similarly, the input admittance   Yi of the measurement instrument is 
the Norton equivalent admittance defined for its input terminals.  

 
 

 

 
Connecting the Norton model for the device under test to the input 
admittance of the measurement instrument we have the network at 
the right. 
 
The Norton equivalent through variable source is by definition equal 
to   Fo , the value that we wish to measure.  Applying the through 

variable divider rule:  
    

Fm(s)
Fo (s)

=
1

1 +Yo Yi
.   

 
Since we desire that the ratio approach unity, the input admittance 
of the measurement instrument must be large in comparison with 
the output admittance of the device under test:    Yi >> Yo  
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