Exercise 12.1 scallywag
Python Solution
Load Python packages

import numpy as np

import matplotlib.pyplot as plt
import sympy as sp

import dysys as ds

import control

Define the System

Define the transfer function by using the dysys package to create a symbolic
transfer function and converting it to a control package transfer function
object (this is easier because H(s) is given in neither expanded form nor
zero-pole-gain form) as follows:

s = sp.symbols("s", complex=True)

H = ds.tfs(10%(s + 3)/((s + 2)*(s**2 + 8%s + 41)))
H_ = H.to_control()

print (H_)

10 s + 30

s”3 + 10 s72 + 57 s + 82

Poles and Zeros

The poles and zeros can be computed as follows:

poles = H_.poles()

H_.zeros()

zeros
print(f"Poles: {polesl}", f"\nZeros: {zerosl}")

Poles: [-4.+5.j -4.-5.j -2.+40.j]
Zeros: [-3.+0.j]

The real parts of the poles are all negative; therefore, the system is
asymptotically stable. # Pole-Zero Plot {-} A pole-zero plot can be created
automatically with control.pzmap (), but it can be created manually (and
more configurably) as follows:

fig, ax = plt.subplots()
ax.scatter(
np.real(poles), np.imag(poles), s=50, marker="x", facecolors="k"

ax.scatter(

np.real(zeros), np.imag(zeros),

s=50, marker="o", facecolors="none", edgecolors="k"
)
ax.plot([1],[0]) # Force origin in view
ax.spines[['left', 'bottom']].set_position('zero')
ax.spines[['top', 'right']].set_visible(False)
ax.set_xlabel("$\\Re(s)$", loc="right")
ax.set_ylabel("$\\Im(s)$", loc="top")
plt.show()

Im(s)

X
4 F
2.—

1 Fany 1 A

—4 =3 5 —1 i) 1

Re(s

Ll ()
—4F

X

Figure tf.1: The pole-zero plot for H(s).
Step Response

The step response can be simulated with control.step_response() as
follows:

t
y

np.linspace(0, 3, 101)

control.step_response(H_, T=t, squeeze=True).outputs

Plot the response as follows:

fig, ax = plt.subplots()

ax.plot(t, y)

ax.set_xlabel("Time (s)")
ax.set_ylabel("Unit step response")
plt.show()

Unit step response

0.3F

0.2F

0.0F

0.0 0.5 1.0 1.5

3.0

Time (s)

Figure tf.2: The unit step response for H(s).

MATLAB Solution

Solution for exercise tf.scallywag

Define the transfer function model

The numerator

and denominators need

expanded for entering to tf. The numerator

is trivial, but let’s use Matlab’s symbolics for the

denominator.
syms s
disp(...
expand(... 7 expands the expression

(s+2)*(s8"2 + 8xs + 41) ...
). ..

]s*s + 10%s~2 + 57%s + 82

Now we can use tf.

H=tf(...
[10,30],... / numerator
[(1,10,57,82]) ... 7/ denominator

s”3 + 10 s72 + 57 s + 82

Continuous-time transfer function.

a. Poles and zeros

The zeros can be computed with the function

Zero.

zeros_H = zero(H);

disp(zeros_H)

-3

The poles can be computed with the function
pole.

poles_H = pole(H);
disp(poles_H)

-4.0000 + 5.0000i
-4.0000 - 5.0000i
-2.0000 + 0.0000i

b. Stability

The poles all have negative real parts; therefore,
the system is stable. There is a complex pair of
poles, so system responses will tend to oscillate.

c. Pole-zero plot

The pzmap function gives the pole-zero plot.

pzmap (H)
Pole-Zero Map

S

&

3

< T -3 2 T
)

=

ole}

Real Axis (seconds™)

d. Step response

The unit step response is easily computed using
the step command.

linspace(0,3,100); 7 3 seconds
step(H,t); / step response

y

This can be plotted in the usual way.

figure

plot(t,y,...
'linewidth',1 ...

)

xlabel('time (s)')

ylabel('step response')

0.4 4

0.3

unit step response
o
N

05 1 15 2 25
time (s)

Exercise 12.2 swashbuckling

Y

Python Solution
Load Python packages

import numpy as np

import numpy.linalg

import matplotlib.pyplot as plt
import sympy as sp

import dysys as ds

import control

Define the System

Define the state-space model as follows:

np.array([[-1, 4], [0, -3]11)
np.array([[1], [-1]11)
np.array([[1, 0]])
np.array([[0]])

sys = control.ss(A, B, C, D)

O Q w =
non

The transfer function can be found from the sys model as follows:

H = control.tf(sys)
print (H)

Poles and Zeros

The poles and zeros can be computed as follows:

poles = H.poles()

zeros = H.zeros()

print(f"Poles: {poles}", f"\nZeros: {zerosl}")

Poles: [-3.+0.j -1.+0.j]
Zeros: [1.+40.j]

Comparing Poles and Eigenvalues

The poles were computed above. The eigenvalues of A can be computed as
follows:

evals, evecs = np.linalg.eig(A)

print(f"Eigenvalues: {evals}")

Eigenvalues: [-1. -3.]

So, as we expected, the eigenvalues of A are equal to the poles of H(s). #
Pole-Zero Plot {-} A pole-zero plot can be created automatically with
control.pzmap (), but it can be created manually (and more configurably)
as follows:

fig, ax = plt.subplots()
ax.scatter(
np.real(poles), np.imag(poles), s=50, marker="x", facecolors="k"

ax.scatter(

np.real(zeros), np.imag(zeros),

s=50, marker="o", facecolors="none", edgecolors="k"
)
ax.plot([1],[0]) # Force origin in view
ax.spines[['left', 'bottom']].set_position('zero')
ax.spines[['top', 'right']].set_visible(False)
ax.set_xlabel("$\\Re(s)$", loc="right")
ax.set_ylabel("$\\Im(s)$", loc="top")
plt.show()

Im(s)

0.04}F
0.02F
1 1 1 1l A an 1 Fany
—}3{.0 —2.5 —2.0 —1.5 —)1'(.0 —0.5 0|0 0.5 170
Re(s
—0.02F (s)
—0.04F

Figure tf.3: The pole-zero plot for H(s).

Stability and Free Response Characteristics

The real parts of the poles are all negative; therefore, the system is
asymptotically stable. The poles are real, so we expect the free response to
decay to zero from the initial conditions without oscillation at two different

decay rates, one for each pole. The right half-plane zero means the system is
non-minimum phase; this means the free response may initially move in the
direction opposite zero. # Step Response {-}

Define a symbolic transfer function as follows:

s = sp.symbols("s", complex=True)
H_= (s - 1)/(s**2 + 4xg + 3)

The Laplace transform of the input is, by inspection,

U_ = 9/s

So the output in the Laplace domain is

Take the inverse Laplace transform as follows:

t
y = sp.inverse_laplace_transform(Y_, s, t).collect(sp.Heaviside(t))

sp.symbols("t", real=True) # Time variable

print(y)

(-3 + 9xexp(-t) - 6*exp(-3*t))*Heaviside(t)

Problem 12.1

_ s+2
(a) H(s) = =3
Pole: s= -3
Zero: s = -2
(b) H(s) 25+1 s+ 0.5

e s+ 12 543 +9)

Poles: s=-3 s=-—4
Zero: s =-0.5

= _ s I
() B = 5T = G R A T 62— 3v32)

Poles: s=-5/2+jV3/2 s=-5/2-jV/3/2
Zero: s=0

Problem 12.3

In Fig. 12.12a the two networks have transfer functions

1 1

B)=gos71) =g03 71

The amplifiers effectively isolates the two networks (no loading effect of H;(s) on H,(s)) so
that the complete transfer function is:

1 1 5000
(0.01s 4+ 1)(0.02s + 1) ~ 0.0002s2 +0.03s +1 52 + 150s + 5000

H.(s) = Hi(s)Ha(s) =

In Fig 12.12b the two systems interact, and the overall system must be modeled as a unit.
Using the linear graph method the transfer function is

5000

H(s) = 372505 + 5000

The two systems vary in their damping. In general it is not valid to cascade tthe transfer
function of two systems unless it is known that they do not load each other.

Problem 12.5

(a) Define the output of the summer to be the error e(t). Then for exponential inputs
E(s) = U(s) - Y(s)Ha(s)
Y(s) = E(s)H(s)

which are comined to give

_ H,(s)
H(s) =17 Hy(s)Hs(s)

(b) Let the two transfer functions be written as
M(s) _ KilTEi(s — 21.) Ha(s) = Na(s) _ K312, (s — 22,)

Hy(s) = Di(s) TZi(s—py) Dyfs) — MZ(s - pa)
then
_ Ni(s)/Di(s)
H(s) = 1 4+ Ny(s)N(s)/Dy(s)Ds(s)
MN1(s)Ds(s)

D, (s)Da(s) + Ni(s)Ny(s)
— K1 T2 (s = 21,) [T (s — P2;)
i=1(8 = pra) ITZ (s = p2) + KaKG T2, (s — 21,0) TT224 (s — 22,)

(¢) From (b) the closed-loop zeros consist of the set of unmodified zeros of H, (s) and the
poles of the feedback system Hj(s). The closed-loop poles cannot be simply stated,
except to note that as K; K> — 0 the poles tend to the open-lop poles, that is the roots
of Dy(s)D,(s) = 0, while if K;K; — oo the poles approach the open-loop zeros, that
is the roots of Ny(s)Nz(s) =0

Problem 12.7

A
Ajo Ajo s-plane jo s-plane
s-plane " s
s: sz‘7s+12 s(;z&+7)
5 X -j0.868
~0 O 4 2% > o
*-0- > TAS o5 ° 5 Jjoses

(@) (b) ©

Problem 12.15

The pole-zero plots are not given here.

(a) Pole as s = —4. zero at s = 0. The system is stable. The initial condition response will
be of the form

y(t) = Ce™™

(b) Poles at s = —1 and s = —4. The system is stable. The initial condition response is of
the form

y(t) = C;e" - Cze-“

(c) Poles at s = —2 and s = +2. The system is unstable. The initial condition response is

of the form
y(t) = Cle“z' + Czcu

(d) Poles at s = -1 +j\/z3) and s = —1 —j\/(3), and a zero at s = +2. This is an
underdamped non-minimum phase system - it is stable. The initial condition response

is of the form
y(t) = Ce'sin(3t + ¢

where C and ¢ are found from the initial conditions.
Problem 12.23
For each of the following systems

System 1: (a) The system eigenvalues are: A,A\; = —4,—1. The system characterstic
equation is s + 5s +4 = 0.
(b)

Y(s)
U(s)

Poles at s;,5, = —4,1.

4
s24+5s+4

=C[sI-A]"'B=

(¢) The transfer function poles are identical to the eigenvalues of the A matrix.

System 2: (a) The system eigenvalues are: \;, \; = —3.225, —0.775. The system character-
stic equation is 2s? + 8s + 5 = 0.

(b)
Y(s) _ -l;m 2
U(s) Opi=A)"B= 2s? 4 8s + 54
Poles at s,,8; = — — 3.225, —0.775.

(c) The transfer function poles are identical to the eigenvalues of the A matrix.

