Actor-Critic Deep Reinforcement Learning:
Inverted Pendulum on a Cart

Source Filename: /main.py

Rico A. R. Picone

Problem Statement

Write a deep reinforcement learning program to learn a policy network my(s, a)
to regulate the angular position of an inverted pendulum on a cart to be vertical.
Use two networks, an actor (policy 7y) and a critic (value Vi (s)). Use a temporal
difference TD(0) method to update the networks. Use the Gymnasium cart-pole
environment. Note that this has a discrete action space, able to push the cart
with a force a unit leftward (0) or rightward (1). Train for several episodes and
display the results.

Load Packages and Set Script Parameters
Begin by importing the necessary packages as follows:

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

import gymnasium as gym

import tensorflow as tf

import time

import animation # Import the animation module (animation.py)

Set script parameters as follows:

retrain = True # Retrain the policy and value networks
save = True # Save the rewards and policy and value networks
visualize = False # TODO fiz True Visualize the cart/pole environment

file_rewards = 'rewards.npy' # File to save the rewards
file_policy = 'policy_network.keras' # File to save the policy network
file_value = 'value_network.keras' # File to save the wvalue network

n_episodes = 300 # Number of episodes to train from


https://gymnasium.farama.org/environments/classic_control/cart_pole/

Set Up the Cart-Pole Environment

Set up the cart-pole environment as follows:

if visualize:

env = gym.make('CartPole-vl', render_mode='human') # Create environment
else:

env = gym.make('CartPole-vl', render_mode=None) # Create environment
env.reset() # Reset the environment to the initial state

(array([-0.01711824, -0.01674245, 0.00248054, -0.00782781], dtype=float32),
{H

Print out the action space and observation space:

print("Action space:", env.action_space)
print("Observation space:", env.observation_space)

Action space: Discrete(2)
Observation space: Box([-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38], [4.80(

Test the environment by taking random actions for an episode and visualizing
the results:

for i in range(20):
if visualize:
time.sleep(0.03) # Pause loop for rendering
s_new, r_new, term, trunc, info = env.step(
env.action_space.sample ()
) # Take a random action
print("Step", i, "State", s_new, "Reward", r_new)

if term:
break
Step O State [-0.01745309 0.17834383 0.00232398 -0.29972708] Reward 1.0
Step 1 State [-0.01388621 -0.01681116 -0.00367056 -0.00631211] Reward 1.0
Step 2 State [-0.01422243 -0.21188028 -0.0037968 0.28521046] Reward 1.0
Step 3 State [-0.01846004 -0.40694788 0.00190741 0.5766935 ] Reward 1.0
Step 4 State [-0.026599 -0.21185271 0.01344128 0.28461206] Reward 1.0
Step 5 State [-0.03083605 -0.01692502 0.01913352 -0.00380146] Reward 1.0
Step 6 State [-0.03117455 0.17791738 0.01905749 -0.29038665] Reward 1.0
Step 7 State [-0.0276162 0.37276247 0.01324976 -0.57699865] Reward 1.0
Step 8 State [-0.02016095 0.5676962 0.00170978 -0.8654783 ] Reward 1.0
Step 9 State [-0.00880703 0.37255105 -0.01559978 -0.5722583 ] Reward 1.0
Step 10 State [-0.00135601 0.17765127 -0.02704495 -0.28453034] Reward 1.0
Step 11 State [ 0.00219702 -0.01707473 -0.03273555 -0.00049841] Reward 1.0
Step 12 State [ 0.00185552 0.17850104 -0.03274552 -0.3033274 ] Reward 1.0
Step 13 State [ 0.00542554 -0.01613931 -0.03881207 -0.02114888] Reward 1.0
Step 14 State [ 0.00510276 0.17951714 -0.03923505 -0.32582042] Reward 1.0
Step 15 State [ 0.0086931 -0.01502487 -0.04575146 -0.04576413] Reward 1.0



Step 16 State [ 0.0083926  0.18072225 -0.04666674 -0.3525238 ] Reward 1.0
Step 17 State [ 0.01200705 0.3764757 -0.05371721 -0.6595493 ] Reward 1.0
[ 0.0
[ 0.0

Step 18 State 1953656 0.57230246 -0.0669082 -0.968651 ] Reward 1.0
Step 19 State 3098261 0.3781395 -0.08628122 -0.69771457] Reward 1.0

Define the Policy and Value Networks and their Optimizers

Define a function that defines the architecture and compiles the policy network
as follows:

def policy_network_com(optimizer):
"""Define and compile the policy network.

Input layer: 32 units, ReLU activation, input shape of observation space
Output layer: 2 untits, softmax activation, output shape of action space

Returns:

Compiled policy network

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Input(env.observation_space.shape))
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(env.action_space.n, activation='softmax'))
model .compile (optimizer=optimizer, loss='categorical_crossentropy')
return model

Define a function that defines the architecture and compiles the value network
as follows:

def value_network_com(optimizer):
"""Define and compile the value metwork.

Input layer: 32 units, ReLU activation, input shape of observation space
Output layer: 1 unit, linear activation, output shape of 1 (value)

model = tf.keras.models.Sequential()

model.add(tf .keras.layers. Input(env.observation_space.shape))
model.add(tf.keras.layers.Dense (32, activation='relu'))
model.add(tf.keras.layers.Dense(1l, activation='linear'))

model .compile (optimizer=optimizer, loss='mean_squared_error')

return model

Define the optimizers for the policy and value networks:

optimizer_policy = tf.keras.optimizers.Adam(learning_rate=0.001)
optimizer_value = tf.keras.optimizers.Adam(learning_rate=0.001)

Define the policy and value networks:



policy_network = policy_network_com(optimizer_policy)
value_network = value_network_com(optimizer_value)

Train the Policy and Value Networks

Define a function to update the policy and value networks using a temporal
difference TD(0) method as follows:

def updater(policy_network, value_network, state, action, state_next, reward, gamma):
""ipdate the policy and value networks using a temporal difference TD(0) method.

Args:

policy_network (keras.models.Sequential): Policy network
value_network (keras.models.Sequential): Value network
state (numpy.ndarray): State

action (int): Action

state_next (numpy.ndarray): Next state

reward (float): Reward at old state

gamma (float): Discount factor

Returns:

policy_network: Updated policy network

value_network: Updated value network

with tf.GradientTape(persistent=True) as tape:
tf.keras.utils.disable_interactive_logging() # Suppress bars
state = state.reshape(l, -1) # 2D array
state_next = state_next.reshape(l, -1) # 2D array

# TD(0) error

value = value_network(state) # Value of the current state
value_next = value_network(state_next) # Value of the next state
td_target = reward + gamma * value_next # ITD(0) target

td_error = td_target - value # TD(0) error

# Losses

action_prob = policy_network(state) [0, action] # Prob of action taken
log_prob = tf.math.log(action_prob) # Log prob of action taken (negative)
policy_loss = -log_prob * td_error # Policy loss

value_loss = tf.square(td_error) # Value loss (MSE)

# Gradients
policy_grads = tape.gradient(
policy_loss, policy_network.trainable_variables
) # Gradient of the loss function wrt policy network parameters
value_grads = tape.gradient(



value_loss, value_network.trainable_variables
) # Gradient of the loss function wrt value network parameters

# Clip gradients
policy_grads = tf.clip_by_global_norm(policy_grads, 10.0) [0]
value_grads = tf.clip_by_global_norm(value_grads, 10.0) [0]

# Apply gradients
optimizer_policy.apply_gradients(

zip(policy_grads, policy_network.trainable_variables)
) # Update the policy network parameters
optimizer_value.apply_gradients(

zip(value_grads, value_network.trainable_variables)
) # Update the value network parameters

return policy_network, value_network

In animation.py, we define two animation classes to monitor the training. The
first, Angle_policy_animation, plots a sample of the policy network for the
pole (pendulum) angle with all other states set to 0. Our intuition is that the
policy network should output a higher probability of pushing the cart in the
direction that will bring the pole closer to the vertical position (i.e., leftward if
the pole is leaning left and rightward if the pole is leaning right). The second,
Angle_value_animation, plots a sample of the value network for the pole (pen-
dulum) angle with all other states set to 0. Here our intuition is that the value
network should output a higher value for the pole angle closer to the vertical
position.

We are now ready to define a function to train the policy and value networks
using a temporal difference TD(0) method (i.e., the updater () function we
defined) as follows:

def train_policy_value_networks(
env, policy_network, value_network, updater,
n_episodes=1000, gamma=0.99, max_episode_steps=100,
plot=False, print_=False

"""Train policy and value networks using a temporal difference TD(0) method
Update the policy and value networks using the updater() function.

Args:

policy_network (keras.models.Sequential): Policy network
value_network (keras.models.Sequential): Value network
n_episodes (int): Number of episodes to train from

gamma (float): Discount factor

mazx_episode_steps (int): Maximum number of steps per episode



Returns:
policy_network: Trained policy network
value_network: Trained value network
rewards: Numpy array of episode rewards
mimn
rewards = []
if plot:
animation_policy = animation.Angle_policy_animation(policy_network) .animate()
animation_value = animation.Angle_value_animation(value_network) .animate()
for episode in range(n_episodes):
if plot:
animation_policy.policy_network = policy_network
plt.figure(animation_policy._fig.number) # Activate figure
plt.pause(0.01) # Pause for rendering
animation_value.value_network = value_network
plt.figure(animation_value._fig.number) # Activate figure
plt.pause(0.01) # Pause for rendering
state, _ = env.reset() # Reset env (random initial state)
episode_rewards = []
for _ in range(max_episode_steps):
prob = policy_network(state.reshape((1, -1))) .numpy() [0]
# Get action probabilities from policy metwork
action = np.random.choice(env.action_space.n, p=prob)
# Sample action from policy network
state_new, reward, term, trunc, _ = env.step(action) # Enact
episode_rewards.append (reward)
policy_network, value_network = updater(
policy_network, value_network,
state, action, state_new,
reward, gamma
) # Update the policy and value networks
if term or trunc:
break
state = state_new
if print_:
print (f"Episode {episode + 1}/{n_episodes}. "
f"Reward sum: {sum(episode_rewards)}"
f'"\t{int (sum(episode_rewards) /500%100)*'="}"
)
rewards.append (sum(episode_rewards))
return policy_network, value_network, rewards

Train the policy and value networks

if retrain:
policy_network, value_network, rewards = train_policy_value_networks (



env, policy_network, value_network, updater,
n_episodes=n_episodes, gamma=0.99, max_episode_steps=500,
plot=False, print_=True

)
if save:
policy_network.save(file_policy)
value_network.save(file_value)
np.save(file_rewards, rewards)
else:

policy_network = tf.keras.models.load_model(file_policy)
value_network = tf.keras.models.load_model(file_value)
rewards = np.load(file_rewards)

WARNING:tensorflow:Calling GradientTape.gradient on a persistent tape inside its context is
WARNING:tensorflow:Calling GradientTape.gradient on a persistent tape inside its context is
Episode 1/300. Reward sum: 21.0 ====

Episode 2/300. Reward sum: 20.0 ====

Episode 3/300. Reward sum: 45.0 =========

Episode 4/300. Reward sum: 17.0 ===

Episode 5/300. Reward sum: 22.0 ====

Episode 6/300. Reward sum: 14.0 ==

Episode 7/300. Reward sum: 46.0 =========

Episode 8/300. Reward sum: 13.0 ==

Episode 9/300. Reward sum: 25.0 =====

Episode 10/300. Reward sum: 27.0 =====

Episode 11/300. Reward sum: 23.0 ====

Episode 12/300. Reward sum: 26.0 =====

Episode 13/300. Reward sum: 24.0
Episode 14/300. Reward sum: 24.0 ====
Episode 15/300. Reward sum: 18.0
Episode 16/300. Reward sum: 18.0
Episode 17/300. Reward sum: 35.0 =======
Episode 18/300. Reward sum: 15.0 ===
Episode 19/300. Reward sum: 24.0 ====
Episode 20/300. Reward sum: 36.0 =======
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Episode 52/300. Reward sum: 31.0 ======
Episode 53/300. Reward sum: 16.0 ===
Episode 54/300. Reward sum: 16.0 ===
Episode 55/300. Reward sum: 21.0 ====
Episode 56/300. Reward sum: 26.0 =====
Episode 57/300. Reward sum: 25.0 =====
Episode 58/300. Reward sum: 47.0 =========
Episode 59/300. Reward sum: 41.0 ========
Episode 60/300. Reward sum: 17.0 ===
Episode 61/300. Reward sum: 30.0 ======
Episode 62/300. Reward sum: 15.0 ===
Episode 63/300. Reward sum: 66.0 =============
Episode 64/300. Reward sum: 14.0 ==
Episode 65/300. Reward sum: 38.0 =======
Episode 66/300. Reward sum: 39.0 =======

Episode 67/300. Reward sum: 101.0
Episode 68/300. Reward sum: 31.0 ======
Episode 69/300. Reward sum: 34.0 ======
Episode 70/300. Reward sum: 30.0 ======

Episode 71/300. Reward sum: 97.0 =
Episode 72/300. Reward sum: 49.0 =========
Episode 73/300. Reward sum: 36.0 =======
Episode 74/300. Reward sum: 58.0 ===========
Episode 75/300. Reward sum: 40.0 ========
Episode 76/300. Reward sum: 51.0 ==========
Episode 77/300. Reward sum: 27.0 =====
Episode 78/300. Reward sum: 16.0 ===

Episode 79/300. Reward sum: 39.0 =======
Episode 80/300. Reward sum: 32.0 ======
Episode 81/300. Reward sum: 23.0 ====
Episode 82/300. Reward sum: 16.0 ===
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Episode 207/300. Reward sum: 51.0 ==========
Episode 208/300. Reward sum: 124.0

Episode 209/300. Reward sum: 134.0

Episode 210/300. Reward sum: 201.0
Episode 211/300. Reward sum: 34.0 ======
Episode 212/300. Reward sum: 180.0

Episode 213/300. Reward sum: 120.0

Episode 214/300. Reward sum: 72.0

Episode 215/300. Reward sum: 246.
Episode 216/300. Reward sum: 328.

Episode 217/300. Reward sum: 391.

Episode 218/300. Reward sum: 500.

Episode 220/300. Reward sum: 196.

Episode 221/300. Reward sum: 500.

0
0
0
0
Episode 219/300. Reward sum: 500.0
0
0
Episode 222/300. Reward sum: 217.0

0

Episode 223/300. Reward sum: 100.

Episode 224/300. Reward sum: 17.0 ===

Episode 225/300. Reward sum: 500.

Episode 226/300. Reward sum: 500.
Episode 227/300. Reward sum: 388.

Episode 228/300. Reward sum: 199.

Episode 229/300. Reward sum: 500.

Episode 230/300. Reward sum: 500.
Episode 231/300. Reward sum: 500.

Episode 232/300. Reward sum: 500.

Episode 233/300. Reward sum: 500.

Episode 234/300. Reward sum: 500.
Episode 235/300. Reward sum: 500.

Episode 236/300. Reward sum: 500.

O O O O O O O O o o o o o

Episode 237/300. Reward sum: 500.
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Episode 300/300. Reward sum: 500.0

Plot the Results

Plot the rewards as follows:

episodes = np.arange(len(rewards))
plt.figure()

plt.plot(episodes, rewards)
plt.xlabel('Episode')
plt.ylabel('Reward')

plt.draw()
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This plot shows the reward obtained in each episode. The reward is the sum
of the rewards obtained in each step of the episode (i.e., how long the pole
was kept upright). Because our method is on-policy, the reward is expected to
increase over time as the policy network improves. We observe that on average
the reward does in fact increase over time.

Plot a sample of the policy network for the pole (pendulum) angle as follows:

fig, ax = plt.subplots()

angles = np.linspace(-0.418, 0.418, 101) # Pole angles
probs_left = np.zeros((101)) # Probability of pushing left
probs_right = np.zeros((101)) # Probability of pushing right
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for i in range(len(angles)):
state = np.array([0, O, angles[i], 0]) # State
prob = policy_network(state.reshape((1l, -1))) .numpy() [0] # Probabilities
probs_left[i] = prob[0]
probs_right[i] = prob[1]
ax.bar(angles, probs_left, width=0.005, color='b')
ax.bar(angles, probs_right, width=0.005, bottom=probs_left, color='r')
ax.set_xlabel('Pole Angle')
ax.set_ylabel('Probability"')
ax.legend(['Push Left', 'Push Right'])
plt.draw()
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This plot shows the probability of pushing the cart left or right for different
pole angles. We observe that the policy network outputs a higher probability of
pushing the cart in the direction that will bring the pole closer to the vertical
position (i.e., leftward if the pole is leaning left and rightward if the pole is
leaning right). This is consistent with our intuition of an optimal policy.

Plot a sample of the value network for the pole (pendulum) angle as follows:

fig, ax = plt.subplots()

angles = np.linspace(-0.418, 0.418, 101) # Pole angles
values = np.zeros((101)) # Value

for i in range(len(angles)):
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state = np.array([0, O, angles[i], 0]) # State
values[i] = value_network(state.reshape(l, -1)).numpy() [0] [0]
ax.plot(angles, values)
ax.set_xlabel('Pole Angle')
ax.set_ylabel('Value')
plt.show()
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This plot shows the value of the pole angle. We observe that the value network

outputs a higher value for the pole angle closer to the vertical position. This is
consistent with our intuition of an optimal value function.
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