03.1 ss.svar State variable system representation

1 State variables, typically denoted x_{i}, are members of a minimal set of variables that completely expresses the state (or status) of a system. All variables in the system can be expressed algebraically in terms of state variables and input variables, typically denoted u_{i}.
2 A state-determined system model is a system for which

1. a mathematical description in terms of n state variables x_{i},
2. initial conditions $x_{i}\left(t_{0}\right)$, and
3. inputs $u_{i}(t)$ for $t \geqslant t_{0}$
are sufficient conditions to determine $x_{i}(t)$ for all $t \geqslant t_{0}$. We call n the system order.
3 The state, input, and output variables are all functions of time. Typically, we construct vector-valued functions of time for each. The so-called state vector x is actually a vector-valued function of time $x: \mathbb{R} \rightarrow \mathbb{R}^{n}$. The i th value of x is a state variable denoted x_{i}.
4 Similarly, the so-called input vector u is actually a vector-valued function of time $u: \mathbb{R} \rightarrow \mathbb{R}^{r}$, where r is the number of inputs. The i th value of u is an input variable denoted u_{i}.
5 Finally, the so-called output vector y is actually a vector-valued function of time $y: \mathbb{R} \rightarrow \mathbb{R}^{m}$, where m is the number of outputs. The i th value of y is an output variable denoted y_{i}.
6 Most systems encountered in engineering practice can be modeled as state-determined. For these systems, the number of state variables n is equal to the number of independent energy storage elements.
7 Since to know the state vector x is to know everything about the state, the energy stored in each element can be determined from x. Therefore, the time-derivative $\mathrm{d} x / \mathrm{dt}$ describes the power flow.
8 The choice of state variables represented by x is not unique. In fact, any basis transformation yields another valid state vector. This is because, despite a vector's components changing when its basis is changed, a
"symmetric" change also occurs to its basis vectors. This means a vector is a coordinate-independent object, and the same goes for vector-valued functions. This is not to say that there aren't invalid choices for a state vector. There are. But if a valid state vector is given in one basis, any basis transformation yields a valid state vector.
9 One aspect of the state vector is invariant, however: it must always be a vector-valued function in \mathbb{R}^{n}. Our method of analysis will yield a special basis for our state vectors. Some methods yield rather unnatural state variables (e.g. the third time-derivative of the voltage across a capacitor), but ours will yield natural state variables (e.g. the voltage across a capacitor or the force through a spring).

Figure svar.1: block diagram of a system with input u, state x, and output y.

