03.8 ss.exe Exercises for Chapter 03

SS

Exercise 03.1 metroid

Draw necessary sign coordinate arrows, a linear graph, a normal tree, and identify state variables and system order for each of the following schematics.
a. Electrical system, current source

b. Rotational mechanical system, torque source

c. Translational mechanical system, velocity source

Exercise 03.2 megaman

Draw necessary sign coordinate arrows, a linear graph, a normal tree, and identify state variables and system order for each of the following schematics.
a. Electrical system, voltage source

b. Rotational mechanical system, angular velocity source

c. Translational mechanical system, force source

Exercise 03.3 sonic

Draw necessary sign coordinate arrows, a linear graph, a normal tree, and identify state variables and system order for each of the following schematics.
a. Electrical system, voltage source

b. Rotational mechanical system, torque source

c. Translational mechanical system, force source

Exercise 03.4 nintendo

Use the following linear graph for a circuit to answer the questions below, which are the steps to determining a state-space model of the circuit. Use the sign convention from the diagram. V_{S} is a voltage source.

a. Determine the normal tree, state variables, system order, state vector, input vector, and output vector for the outputs i_{R} and v_{C}.
b. Write the required elemental, continuity, and compatibility equations.
c. Solve for the state equation in standard form.
d. Solve for the output equation in standard form.

Exercise 03.5 supernintendo

Use the following linear graph for a mechanical translational system to answer the questions below, which are the steps to determining a state-space model from the linear graph.

Use the sign convention from the diagram. F_{S} is a force source. Let the outputs be v_{m} and f_{k}.

a. Determine the normal tree, state variables, system order, state vector, input vector, and output vector.
b. Write the required elemental, continuity, and compatibility equations.
c. Solve for the state equation in standard form.
d. Solve for the output equation in standard form.

Exercise 03.6 gameboy

Use the following linear graph for a mechanical rotational system to answer the questions below, which are the steps to determining a state-space model from the linear graph.
Use the sign convention from the diagram. T_{S} is a torque source. Let the outputs be Ω_{J} and T_{B}.

a. Determine the normal tree, state variables, system order, state vector, input vector, and output vector.
b. Write the required elemental, continuity, and compatibility equations.
c. Solve for the state equation in standard form.
d. Solve for the output equation in standard form.

Exercise 03.7 blowhard

Use the following linear graph for a mechanical rotational system to answer the questions below, which are the steps to determining a state-space model from the linear graph.
Use the sign convention from the diagram. Ω_{S} is an angular velocity source. Let the outputs be the angular velocity Ω_{J} of the inertia and the angular displacement θ_{k} across the spring.

1. Determine the normal tree, state variables, system order, state vector, input vector, and output vector.
2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

Exercise 03.8 blinken

Use the following linear graph for an electrical system to answer the questions below, which are the steps to determining a state-space model from the linear graph.
Use the sign assignments from the diagram. I_{S} is a current source. Let the outputs be the voltage across the capacitor v_{C} and the current through the resistor $\mathfrak{i}_{\mathrm{R}}$.

1. Determine the normal tree, state variables, system order, state vector, input vector, and output vector.
2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

Exercise 03.9 chunker

Use the assigned coordinate arrows to draw a linear graph, a normal tree, and identify state variables and system order for each of the following schematics.

1. Electrical system, voltage and current source

2. Rotational mechanical system, torque source, coordinate arrow

3. Translational mechanical system, force sources (2)

Exercise 03.10 stevenuniverse

Use the assigned coordinate arrows to draw a linear graph, a normal tree, and identify state variables, system order, and dependent energy storage elements for
\qquad each of the following schematics.

1. Electrical system, voltage and current source

2. Rotational mechanical system, angular velocity source

3. Translational mechanical system, force sources (2)

Exercise 03.11 winken

Use the assigned coordinate arrows to draw a linear graph, a normal tree, and identify state variables and system order for each of the following schematics.

1. Electrical system, voltage source

2. Rotational mechanical system, torque source, coordinate arrow

3. Translational mechanical system, force source, coordinate arrow

Exercise 03.12 granada

Use the assigned coordinate arrows to draw a linear graph, a normal tree, and identify state variables and system order for each of the following systems.

1. Rotational mechanical system, two torque sources

2. Translational mechanical system, velocity source

Exercise 03.13 valencia

Use the following linear graph for a mechanical translational system to answer the questions below, which are the steps to determining a state-space model from the linear graph.
Use the sign convention from the diagram. F_{S} is a force source. Let the outputs be $v_{\mathrm{m}_{1}}$ and $v_{\mathrm{m}_{2}}$.

1. Determine the normal tree, state variables, system order, state vector, input vector, and output vector.
2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

Exercise 03.14 stevenash

Use the linear graph of Fig. exe. 1 for an electrical system to answer the questions below, which are the steps to determining a state-space model
\qquad / from the linear graph.
Use the sign convention from the diagram. V_{S} is a voltage source. Let the outputs be $v_{C_{2}}, v_{R}$, and is (i.e., the source current).

Figure exe.1: A linear graph of an electrical system.

1. Determine the normal tree, state variables, system order, state vector, input vector, and output vector.
2. Write the required elemental, continuity, and compatibility equations.
3. Solve for the state equation in standard form.
4. Solve for the output equation in standard form.

04 emech

