04.1 emech.trans Ideal transducers

1 Two-port system elements can model **transducers**—elements that transfer energy between two energy domains or change its form within an energy domain. The quintessential example, which we will consider in detail, is the **motor**, which converts electrical energy to mechanical energy. However, many other system elements can be considered transducers, and we'll consider a few in this lecture.

2 Each of the two ports has a through- and an across-variable. We use the convention that the power *into* each port (\mathcal{P}_1 and \mathcal{P}_2) is positive, which has implications for the signs of the power flow variables \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{V}_1 , and \mathcal{V}_2 . For an two-port element to transfer power, we have

We define the transformer ratio TF to be

$$\mathsf{TF} \equiv \frac{\mathcal{V}_1}{\mathcal{V}_2} = -\frac{\mathcal{F}_2}{\mathcal{F}_1}.$$
 (1)

Furthermore, we define the gyrator modulus GY to be

$$GY \equiv \frac{v_1}{\mathcal{F}_2} = -\frac{v_2}{\mathcal{F}_1}.$$
 (2)

3 For an **ideal transducer**—one that is linear, time-invariant, and without power loss—we have only two nontrivial solutions:¹

$$\mathcal{V}_2 = \mathcal{V}_1 / \mathsf{TF}$$
 or $\mathcal{V}_2 = -\mathsf{GY} \mathcal{F}_1$
 $\mathcal{F}_2 = -\mathsf{TF} \mathcal{F}_1$ $\mathcal{F}_2 = \mathcal{V}_1 / \mathsf{GY}.$

4 For a given element, if the solution with TF is a good model, we call that element a **transformer**. If the GY solution is a good model, we call it a **gyrator**.

¹For an explanation of *why* that is the case, see Rowell **and** Wormley (1997).

Example 04.1 emech.trans-1

Consider a DC motor with rotor radius r, number of coil turns N, background field B, and rotor length ℓ . The torque T of a DC motor is related to its coil current i by the relation

$$T = -2rNB\ell i.$$

- 1. Determine if DC motors are transformers or gyrators.
- 2. Find TF or GY.
- 3. Derive the relation between the voltage v and the angular velocity Ω across the motor using the assumption that it is an ideal transducer.

Example 04.1 emech.trans-2

Consider two gears with radii r_1 and r_2 and number of teeth n_1 and n_2 .

re:

- 1. Determine the power flow variables for gears.
- 2. Write two independent equations relating the power flow variables.
- 3. Determine if gears are transformers or gyrators.
- 4. Find TF or GY.

re: DC motor

IDEAL TRANSDUCERS

118