
TRANSIENT DC MOTOR PERFORMANCE 140

04.6 emech.dcmtrans Transient DC

motor

performance

Let’s begin by defining the system parameters.

Kt_spec = 13.7; % oz-in/A ... torque constant from spec
Kv_spec = 10.2; % V/krpm ... voltage constant from spec
Tmax_spec = 2.82; % N-m ... max (stall) torque from spec
Omax_spec = 628; % rad/s ... max speed (no load) from spec
N_oz = 0.278013851; % N/oz
m_in = 0.0254; % m/in
Kt_si = Kt_spec*N_oz*m_in; % N-m/A
rads_krpm = 1e3*2*pi/60; % (rad/s)/krpm
Kv_si = Kv_spec/rads_krpm; % V/(rad/s)
d = 2.5*m_in; % m ... flywheel diameter
thick = 1*m_in; % m ... flywheel thickness
vol = pi*(d/2)^2*thick; % flywheel volume
rho = 8000; % kg/m^3 ... flywheel density (304 stainless)
m = rho*vol; % kg ... flywheel mass
Jf = 1/2*m*(d/2)^2; % kg-m^2 ... inertia of flywheel
Jr = 56.5e-6; % kg-m^2 ... inertia of rotor
J = Jf+Jr; % kg-m^2 ... total inertia
Bm = 16.9e-6; % N-m/s^2 ... motor damping coef
Bd = 20e-6; % N-m/s^2 ... bearing damping coef
B = Bm + Bd; % N-m/s^2 ... total damping coef
R = 1.6; % Ohm ... armature resistance
L = 4.1e-3; % H ... armature inductance
TF = Kv_si; % N-m/A ... trans ratio/motor constant

The state-space model was derived in Lecture 04.4 emech.real. First, we

construct the A, B, C, and Dmatrices (a, b, c, and d). Then we define a

MATLAB LTI system model using the ss command.

a = [-B/J,TF/J;-TF/L,-R/L];
b = [0;1/L];
c = [1,0;-B,TF;-TF,-R;0,1;1,0;B,0;...

0,R;0,1;TF,0;0,1;1,0;0,-TF;0,0;0,1];

https://www.mathworks.com/discovery/state-space.html
https://www.mathworks.com/help/control/ref/ss.html


TRANSIENT DC MOTOR PERFORMANCE 141

d = [0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0];
sys = ss(a,b,c,d);

Simulating the step response

The step input is widely used to characterize the transient response of a

system. MATLAB’s step function conveniently simulates the step response

of an LTI system model.

[ys_a,t_a] = step(sys);
disp([t_a(1:6),ys_a(1:6,1:4)]) % print a little

0 0 0 1.0000 0
0.0002 0.0018 0.0056 0.9082 0.0573
0.0005 0.0071 0.0106 0.8245 0.1093
0.0007 0.0155 0.0152 0.7482 0.1565
0.0010 0.0267 0.0194 0.6786 0.1993
0.0012 0.0405 0.0232 0.6151 0.2381

The vector t_a contains values of time and array ys_a contains a vector of
time-series values for each output. If one would like the output for a step

input kus(t) (scaled unit step us(t)), by the principle of superposition for

linear systems, one can scale the output by k. The outputs are plotted in

Figure dcmtrans.1.

It is also interesting to inspect the power flow and energy associated with

each element. Since we have simulated both the across and the through

variable for each element, we can compute the instantaneous power by

simply taking the product of them at each time step. Moreover, we can

cumulatively compute the energy contribution of that power for each

element. For energy storage elements, this is the change in energy stored or

supplied; for energy dissipative elements, this is the change in energy

dissipated; for source elements, this is the energy supplied or absorbed. The

results are plotted in Figure dcmtrans.2.

P = NaN*ones(size(ys_a,1),size(ys_a,2)/2);
E = NaN*ones(size(P));

https://www.mathworks.com/help/control/ref/step.html


TRANSIENT DC MOTOR PERFORMANCE 142

0

10

20
Ω
J

0

0.05

0.1

T
J

−1

0

1

v
L

0

0.5

1

i L

0
5
10
15
20

Ω
B

0
1
2
3
4

·10−4

T
B

0
0.2
0.4
0.6
0.8
1

v
R

0
0.2
0.4
0.6
0.8
1

i R

0
0.2
0.4
0.6
0.8
1

v
1

0
0.2
0.4
0.6
0.8
1

i 1

0

10

20

Ω
2

−0.1

−0.05

0

T
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

time (s)

V
s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

I s

Figure dcmtrans.1: unit step responses for across- (left axes) and through-
variables (right axes). Units are as follows: voltage is in V, current is in A, angular
velocity is in rad/s, and torque is in N-m. and.



TRANSIENT DC MOTOR PERFORMANCE 143

0
0.05
0.1
0.15
0.2

P
J

0
0.5
1
1.5
2

·10−2

E
J

−0.2

0

0.2

P
L

−1

0

1
·10−3

E
L

0

2

4
·10−3

P
B

0

0.5

1
·10−3

E
B

0

0.5

1

P
R

0

2

4
·10−2

E
R

0
0.05
0.1
0.15
0.2

P
1

0
1
2
3
4

·10−2

E
1

−0.2
−0.15
−0.1

−0.05
0

P
2

−4
−3
−2
−1
0

·10−2

E
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2
0.4
0.6
0.8
1

time (s)

P
s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0
1
2
3
4
5

·10−2

E
s

Figure dcmtrans.2: power flow (left axes) and energy
storage/dissipation/transformation (right axes) for a unit step response. The unit
of power is W and the unit of energy is J.



TRANSIENT DC MOTOR PERFORMANCE 144

j = 0;
for i = 1:2:size(ys_a,2)

j = j+1;
P(:,j) = ys_a(:,i).*ys_a(:,i+1);
E(:,j) = cumtrapz(t_a,P(:,j));

end
disp('power:');
disp(P(1:6,1:4)) % print a little
disp('energy change:')
disp(E(1:6,1:4)) % print a little

power:
0 0 0 0

0.0000 0.0520 0.0000 0.0052
0.0001 0.0901 0.0000 0.0191
0.0002 0.1171 0.0000 0.0392
0.0005 0.1352 0.0000 0.0635
0.0009 0.1465 0.0000 0.0907

energy change:
1.0e-03 *

0 0 0 0
0.0000 0.0064 0.0000 0.0006
0.0000 0.0239 0.0000 0.0036
0.0001 0.0494 0.0000 0.0108
0.0001 0.0805 0.0000 0.0235
0.0003 0.1152 0.0000 0.0425

Estimating parameters from the step response

Often, our model has a couple parameters we don’t know well from the

specifications, but must attempt to measure. For the system under

consideration, perhaps the two parameters most interesting to measure are

the dominant time constant and the transformer ratio TF (most important).

In this section, we explore how one might estimate them from a measured

step response. Other parameters in the system could be similarly estimated.

By way of the transfer function, the state-space model can be transformed

into input-output differential equations.

syms B_ J_ TF_ L_ R_ Vs_ s % using underscore for syms



TRANSIENT DC MOTOR PERFORMANCE 145

a_ = [-B_/J_,TF_/J_;-TF_/L_,-R_/L_];
b_ = [0;1/L_];

(s*eye(2)-a_)^-1*b_

ans =
TF_/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s + J_*L_*s^2)

(B_ + J_*s)/(TF_^2 + B_*R_ + B_*L_*s + J_*R_*s + J_*L_*s^2)

The differential equation for ΩJ is

d2ΩJ
dt2

+

(
R

L
+
B

J

)
dΩJ
dt

+
TF2 + BR

JL
ΩJ =

TF

JL
Vs. (1)

The corresponding characteristic equation is

λ2 +

(
R

L
+
B

J

)
λ+

TF2 + BR

JL
= 0 (2)

which has solution

λ1,2 = −
1

2

(
R

L
+
B

J

)
± 1

2

√(
R

L
+
B

J

)2
− 4

TF2 + BR

JL
. (3)

For a step input Vs(t) = Vs, ΩJ(0) = dΩJ(0)/dt = 0, and distinct roots λ1 and

λ2, the solution is

ΩJ(t) = Vs
TF

TF2 + BR

(
1−

1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
))

(4)

Let’s compute λ1 and λ2.

lambda12 = -1/2*(R/L+B/J) + ...
[1,-1]*1/2*sqrt((R/L+B/J)^2 - 4*(TF^2+B*R)/(J*L))

lambda12 =
-16.3467 -373.9941

Both values are real, so we expect not an oscillation, but a decay to a final

value. However, that decay occurs with two different time constants:

τ1 = −1/λ1 and τ2 = −1/λ2.



TRANSIENT DC MOTOR PERFORMANCE 146

tau12 = -1./lambda12
disp(['ratio: ',num2str(tau12(1)/tau12(2))])

tau12 =
0.0612 0.0027

ratio: 22.8788

So second decays much faster than the first. That’s good news for our

estimation project because we can easily ignore the step response’s first

5τ2 ≈ 0.0134 s and assume the rest is decaying at τ1, which we call the

dominant time constant and which we would like to estimate.

Let’s generate some fake response data to get the idea. We’ll layer on some

Gaussian noise with randn to be more realistic. The data is plotted in

Figure dcmtrans.3.

t_data = linspace(0,-6/lambda12(1),200);

O_fun = @(t) TF/(TF^2+B*R)*...
(1-1/(lambda12(2)-lambda12(1))*...
(lambda12(2)*exp(lambda12(1)*t)-...
lambda12(1)*exp(lambda12(2)*t)));

rng(2);
O_data = O_fun(t_data) + .5*randn(size(t_data));

Let’s trim the data to eliminate the time interval corresponding to the first

five of the “fast” time constant τ2.

[t_5,i_5] = min(abs(t_data-(-5/lambda12(2)))); % delete
t_data_trunc = t_data((i_5+1):end);
O_data_trunc = O_data((i_5+1):end);

We need want to take the natural logarithm of the data so we can perform a

linear regression to estimate the “experimental” slow time constant τ̃1. We

must first estimate the steady-state value ΩJ∞ (which we’ll also need). We

don’t want to just take the last value in the array due to its noisiness. The

data goes for six slow time constants, so averaging the data for the last time

constant is a good estimate.



TRANSIENT DC MOTOR PERFORMANCE 147

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

0

2

4

6

8

10

12

time (s)

Ω
J
(r
ad

/
s)

Figure dcmtrans.3: unit step response “data.”

[t_ss,i_ss] = ...
min(abs(t_data_trunc-(-5/lambda12(1)))); % start here

O_data_ss = O_data_trunc((i_ss+1):end);
mu_O_ss = mean(O_data_ss)
S_mu_O_ss = std(O_data_ss)/sqrt(length(O_data_ss))

mu_O_ss =
10.1801

S_mu_O_ss =
0.0763

Let’s use this result to transform the data into its linear form.

O_lin = log(-(O_data_trunc-mu_O_ss));
O_lin_complex = find(imag(O_lin)>0);
disp(['number of complex values: ',...

num2str(length(O_lin_complex))])

number of complex values: 33



TRANSIENT DC MOTOR PERFORMANCE 148

Now we have encountered a problem. The noisiness of the data makes some

of our points wander into negative-land. Logarithms of negative numbers

are complex. Naive approaches like just taking real parts, excluding

complex values, or coercing complex values to −∞ all have the issue of

biasing the data.

There are a lot of approaches we could take. The best approaches include

nonlinear regression and discrete filtering to smooth the data (e.g.

filtfilt).
We opt for an easier approach: we find the index at which the time series

first transgresses the boundary and exclude the data beyond the previous

index.

i_bad = O_lin_complex(1);
t_lin_trunc = t_data_trunc(1:i_bad-1);
O_lin_trunc = O_lin(1:i_bad-1);

This is plotted in Figure dcmtrans.4 along with the linear regression

least-squares fit, computed below.

pf = polyfit(t_lin_trunc,O_lin_trunc,1);
O_lin_fit = polyval(pf,t_lin_trunc);
tau_1_est = -1/pf(1)

tau_1_est =
0.0603

So our estimate for τ1 is τ̃1 = 60.3ms. Recall that our analytic expression for

τ1 is known in terms of other parameters. Similarly, the steady-state value

of ΩJ, which has already been estimated to be ΩJ∞ = 10.18 (i.e. mu_O_ss).
This occurs when the time-derivatives of ΩJ are zero. From the solution for

ΩJ (or its differential equation), for constant Vs(t) = Vs, this occurs when

ΩJ∞ =
TF

TF2 + BR
Vs. (5)

An analytic expression for TF can be found by solving Equation 5, which

yields

TF = Vs ±
1

2Ω̃J∞
√
V2s − 4BRΩ̃2J∞ (6)



TRANSIENT DC MOTOR PERFORMANCE 149

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

−2

−1

0

1

2

time (s)

ln
(Ω
J
∞−

Ω
J
(t
))

transformed data
linear fit

Figure dcmtrans.4: transformed angular velocity “data” with a linear fit.

We choose the solution closer to the a priori (spec) value of 0.0974.

TF_est = (1 + (- 4*B*R*mu_O_ss^2 + 1^2)^(1/2))/(2*mu_O_ss)

TF_est =
0.0976

This estimate T̃F = 0.0976 is very close to the value given in the specification

sheet because we constructed it to be so. Real measurements would probably

yield an estimate further from the specification, which is why we would

estimate it.


