04.8 emech.exe Exercises for Chapter 04 emech

Exercise 04.1 triangle

Respond to the following questions and imperatives with one or two sentences and, if needed, equations and / or sketch.
a. Why do we include a resistor in lumped-parameter motor models?
b. How are brushes used in brushed DC motors?
c. With regard to standard motor curves, why do we say the "braking power" is equivalent to the power that could be successfully transferred by the motor to the mechanical system?
d. In terms of electrical and mechanical processes, why does an efficiency versus torque motor curve have a peak?
e. As a DC motor's bearings wear down, how will its efficiency curve be affected?

Exercise 04.2 square

Figure exe.1: schematic of an electromechanical system for Exercises 04.2 emech. and 04.3 emech..

Consider the system presented in the schematic of Fig. exe.1. Let the DC motor have motor constant K_{a} (units $\mathrm{N}-\mathrm{m} / \mathrm{A}$) and let the motor be driven by an ideal current source I_{S}. Assume the motor inertia has been lumped into J_{1} and motor damping lumped into B_{1}.
a. Draw a linear graph model.
b. Draw a normal tree.
c. Identify any dependent energy storage elements. If the motor was driven by an ideal voltage source instead, how would this change?

Draw a linear graph model and normal tree.

Exercise 04.3 rectangle

Consider the system presented in the schematic of Fig. exe.1. From the linear graph model and normal tree derived in Exercise 04.2 emech., derive a state-space model in standard form. Let the outputs be $\theta_{\mathrm{J}_{1}}$ and $\theta_{\mathrm{J}_{2}}$, the angular positions of the flywheels.

Exercise 04.4 quadrilateral

Figure exe.2: a linear graph model of the electromechanical system.

Consider the linear graph model of a motor coupled to a rotational mechanical system shown in Fig. exe.2. This is similar to the model from the Lec. 04.4 emech.real, but includes the flexibility of the shaft coupler. An ideal voltage source drives the motor-modeled as an ideal transducer with armature resistance R and inductance L, given by the manufacturer in Table real.1. The ideal transducer's rotational mechanical side (2) is connected to a moment of inertia J_{m} modeling the rotor inertia and damping B_{b} modeling the internal motor damping, both values given in the motor specifications. Take $\mathrm{B}_{\mathrm{b}}=\mathrm{B}_{\mathrm{m}}$ and $\mathrm{J}_{\mathrm{f}}=0.324 \cdot 10^{-3} \mathrm{~kg}-\mathrm{m}^{2}$. Assume the shaft coupling has a torsional stiffness of $k=100 \mathrm{~N}-\mathrm{m} / \mathrm{rad}$.
a. Derive a state-space model for the system with outputs \mathfrak{i}_{1} and $\Omega_{J_{\mathrm{f}}}$.
b. Create a Matlab ss model for the system and simulate its response from rest to an input voltage $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$.
c. Plot the outputs through time until they reach steady state.

Exercise 04.5 mrpotatohead

Consider the linear graph model (with normal tree) of Fig. exe.3. This is a model of a motor with constant K_{a} connected to a pair of meshing gears
\qquad
30 p. with transformer ratio N , the output over input gear ratio. An ideal voltage source drives the motor-modeled as an ideal transducer with armature resistance R and inductance L. The motor's rotational mechanical side (2) is connected to a moment of inertia J_{2} modeling the rotor and drive gear combined inertia. The damping element B_{2} models the internal motor damping and the drive gear bearing damping. The output side of the gear transducer (4) is connected to a moment of inertia J_{4} modeling the output gear and load combined inertia. The damping element B_{4} models the internal motor damping and the drive gear bearing damping. Use the parameter values given in Table exe.1.
a. Derive a state-space model for the system with outputs $\Omega_{\mathrm{J}_{2}}$ and $\Omega_{\mathrm{J}_{4}}$.
b. Create a Matlab ss model for the system and simulate its response from rest to an input voltage $\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$.
c. Plot the outputs through time until they reach steady state.

Table exe.1: System parameter values.

R	2Ω
L	8 mH
K_{a}	$0.2 \mathrm{~N}-\mathrm{m} / \mathrm{A}$
J_{2}	$0.1 \cdot 10^{-3} \mathrm{~kg}-\mathrm{m}^{2}$
$\mathrm{~B}_{2}$	$50 \mu \mathrm{~N}-\mathrm{m} /(\mathrm{rad} / \mathrm{s})$
N	5
$\mathrm{~J}_{4}$	$1 \cdot 10^{-3} \mathrm{~kg}-\mathrm{m}^{2}$
$\mathrm{~B}_{4}$	$70 \mu \mathrm{~N}-\mathrm{m} /(\mathrm{rad} / \mathrm{s})$

Figure exe.3: A linear graph model with normal tree in green of an electromechanical system with a gear reduction.

Exercise 04.6 clunker

Draw a linear graph, a normal tree, identify state variables, identify system order, and denote any dependent energy storage elements for each of the following
\qquad -/ schematics.
a. The electronic system of Fig. exe.4, voltage and current sources, and transformer with transformer ratio N .
b. The electromechanical system of Fig. exe. 5 with motor model parameters shown, coordinate arrow in green. Model the propeller as a moment of inertia J_{2} and damping B_{2}.
c. The translational mechanical system of Fig. exe.6, force source, coordinate arrow in green.

Figure exe.4: a circuit diagram.

Figure exe.5: Sketch of a motor coupled to a fan.

Figure exe.6: Schematic of a mechanical system.

Exercise 04.7 curvy

Consider the DC motor curves of Fig. curves.2, reproduced in Fig. exe.7.
a. At peak efficiency, what is the steady-state motor speed?
b. At peak efficiency, what is the steady-state motor torque?
c. You are to use this motor to drive a load at a constant angular speed of $100 \mathrm{rad} / \mathrm{s}$ with at least $1 \mathrm{~N}-\mathrm{m}$ of torque. You wisely choose to use a gear reduction between the motor and load. What should the gear ratio be to meet the above requirements and optimize efficiency? Justify your answer in terms of the motor curves of Fig. exe.7.

Figure exe.7: the motor curve Fig. curves.2.

Exercise 04.8 chair

25 p.

Figure exe.8: An opamp circuit.

Consider the opamp circuit of Fig. exe.8, which will be used to drive a PMDC motor. The input can supply a variable $V_{S} \in[0,10] \mathrm{V}$, the motor has constant $\mathrm{K}_{\mathrm{a}}=0.05 \mathrm{~V} /(\mathrm{rad} / \mathrm{s})$ and coil resistance $\mathrm{R}_{\mathrm{m}}=1 \Omega$, and the opamp has differential supplies $\pm 24 \mathrm{~V}$. Assume the maximum torque magnitude required from the motor at top speed is $\left|T_{2}\right|=0.1 \mathrm{~N}-\mathrm{m}$ and ignore any voltage drop in the motor due to the coil inductance. ${ }^{13}$ Select R_{1} and R_{2} to demonstrably meet the following design requirements:
a. drivable motor speeds of at least $[0,400] \mathrm{rad} / \mathrm{s}$,
b. no saturation of the opamp (i.e. $\left|v_{\mathrm{o}}\right|<24 \mathrm{~V}$), and
c. a maximum combined power dissipation by R_{1} and R_{2} less than 300 mW .

Hint: start with the elemental equations of the DC motor to determine the necessary amplifier output v_{0}, then constrain R_{1} and R_{2} to meet the gain requirements, and finally further constrain R_{1} and R_{2} to meet the power dissipation requirement.

[^0]
Exercise 04.9 onomatopoeia

Consider the DC motor curves of Fig. curves.2, reproduced in Fig. exe.7. If this motor is running at $400 \frac{\mathrm{rad}}{\mathrm{s}}$,

1. How much torque is produced?
2. What is the output power?
3. What is the input power?
4. Why are the input and output power the same or different?

Exercise 04.10 deglazification

Explain in your own words what lumped parameter elements should be used when modeling an electric motor and why.

Exercise 04.11 confuzzled

In the linear graph below a system is depicted consisting of a motor with its related damping and inertia driven by a voltage source and connected to a set of gears driving a second inertia. A rotary spring is attached between the two inertias.
Given this linear graph:

1. draw a normal tree,
2. determine the state variables and system order, and
3. list any dependent energy storage elements and explain what this implies.

Exercise 04.12 levitation

In the linear graph and normal tree below a system is depicted consisting of a motor driven by a voltage source V_{S} with inertia J driving a rotary damper and spring connected in series. Let the motor constant be $K a$, and outputs of the system be the rotational velocity of the inertia, Ω_{J}, and the change in rotational velocity across the rotational damper, Ω_{B}.
Given this linear graph and normal tree:

1. determine the state variables,
2. define the state, input, and output vectors,
3. write the elemental, continuity, and compatibility equations, and
4. solve for the state and output equations.

Part II

Time response

1 In this chapter, we will extend our understanding of linear, time-invariant (LTI) system properties. We must keep in mind a few important definitions.
2 The transient response of a system is its response during the initial time-interval during which the initial conditions dominate. The steady-state response of a system is its remaining response, which occurs after the transient response. Fig. lti. 1 illustrates these definitions.

Figure lti.1: transient and steady-state responses. Note that the transition is not precisely defined. (Figure adapted from Electronics: an introduction by Picone.)

3 The free response of a system is the response of the system to initial conditions-without forcing (i.e. the specific solution of the io ODE with the forcing function identically zero). This is closely related to, but distinct from, the transient response, which is the free response plus an additional term. This additional term is the forced response: the response of the system to a forcing function-without initial conditions (i.e. the specific solution of the io ODE with the initial conditions identically zero).

[^0]: ${ }^{13}$ Do not ignore the voltage drop across R_{m}, though. Note that this amounts to an assumption of steady-state operation at top speed. By requiring a specific T_{2}, we are also implicitly ignoring torque losses due to motor bearing damping.

