O5.1 lti.super+ Superposition, derivative, and integral properties 1 From the principle of **superposition**, **linear**, **time invariant** (LTI) system responses to both initial conditions and nonzero forcing can be obtained by summing the free response y_{fr} and forced response y_{fo} : $$y(t) = y_{fr}(t) + y_{fo}(t).$$ Moreover, superposition says that any linear combination of inputs yields a corresponding linear combination of outputs. That is, we can find the response of a system to each input, separately, then linearly combine (scale and sum) the results according to the original linear combination. That is, for inputs u_1 and u_2 and constants $a_1, a_2 \in \mathbb{R}$, a forcing function | would yield output | | | | |--------------------|--|--|--| | | | | | | | | | | where y_1 and y_2 are the outputs for inputs u_1 and u_2 , respectively. - 2 This powerful principle allows us to construct solutions to complex forcing functions by decomposing the problem. It also allows us to make extensive use of existing solutions to common inputs. - 3 There are two more LTI system properties worth noting here. Let a system have input u_1 and corresponding output y_1 . If the system is then given input $u_2(t) = \dot{u}_1(t)$, the corresponding output is | Similarly, if the same system is then given input $u_3(t) = \int_0^t u_1(\tau) d\tau$, the | | | | | |---|--|--|--|--| | corresponding output is | These are sometimes called the **derivative** and **integral properties** of LTI systems.