05.2 lti.equistab Equilibrium and stability properties

1 For a system with LTI state-space model is in an equilibrium state \bar{x} if constant input \bar{u} , this implies	\dot{x} model \dot{x} = Ax + Bu, \dot{y} = Cx + Du, the \dot{x} = 0. This implies $A\bar{x}$ + Bu = 0. For
If A is invertible, ¹ as is often the case, there is a unique solution for a single equilibrium state:	

Definition 05 lti.1: Stability

If x is perturbed from an equilibrium state \bar{x} , the response x(t) can:

- 1. asymptotically return to \bar{x}
- 2. diverge from \bar{x}
- 3. remain perturbed or oscillate about \bar{x} with a constant amplitude
- 2 A **phase portrait** is a parametric plot of state variable **trajectories**, with time implicit. Phase portraits are exceptionally useful for understanding nonlinear systems, but they also give us a nice way to understand stability, as in Figure equistab.1.

 $^{^1}$ If A is not invertible, the system has at least one eigenvalue equal to zero, which yields an *equilibrium subspace* equal to an offset (by $B\overline{u}$) of the null space of the state space \mathbb{R}^n .

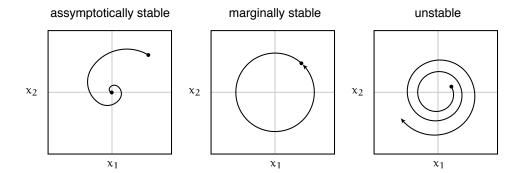


Figure equistab.1: a phase-portrait demonstration of (left) asymptotic stability, (center) marginal stability, and (right) instability for a second-order system.

3 These definitions of stability can be interpreted in terms of the free response of a system, as described, below.

Stability defined by the free response

- 4 Using the concept of the free response (no inputs, just initial conditions), we define the following types of stability for LTI systems².
 - 1. An LTI system is **asymptotically stable** if the free response approaches an equilibrium state as time approaches infinity.
 - 2. An LTI system is **unstable** if the free response grows without bound as time approaches infinity.
 - 3. An LTI system is **marginally stable** if the free response neither decays nor grows but remains constant or oscillates as time approaches infinity.
- 5 These statements imply that the free response alone governs stability. Recall that the free response y_{fr} of a system with characteristic equation roots λ_i with multiplicity m_i , for constants C_i , is

² Nise, 2015.

Each term will either decay to zero, remain constant, or increase without bound—depending on the sign of the *real part* of the corresponding root of the characteristic equation $\operatorname{Re}(\lambda_i)$.

- 6 In other words, for an LTI system, the following statements hold.
 - 1. An LTI system is asymptotically stable if, for all λ_i , Re $(\lambda_i) < 0$.
 - 2. An LTI system is *unstable* if, for any λ_i , Re $(\lambda_i) > 0$.
 - 3. An LTI system is marginally stable if,
 - a) for all λ_i , Re $(\lambda_i) \leq 0$ and
 - b) at least one Re $(\lambda_i) = 0$ and
 - c) no λ_i for which $\operatorname{Re}(\lambda_i) = 0$ has multiplicity $m_i > 1$.

Stability defined by the forced response

- 7 An alternate formulation of the stability definitions above is called the **bounded-input bounded-output** (BIBO) definition of stability, and states the following³.
 - 1. A system is **BIBO stable** if every bounded input yields a bounded output.
 - 2. A system is **BIBO unstable** if any bounded input yields an unbounded output.
- 8 In terms of BIBO stability, marginal stability, then, means that a system has a bounded response to some inputs and an unbounded response to others. For instance, a second-order undamped system response to a sinusoidal input at the natural frequency is unbounded, whereas every other input yields a bounded output.
- 9 Although we focus on the definitions of stability in terms of the free response, it is good to understand BIBO stability, as well.

³ Nise, 2015.