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05.3 lti.vib Vibration isolation table

analysis
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m

Figure vib.1: a vibration isolation table schematic with input velocity Vs.

1 In this example, we exercise many of the methods for modeling and

analysis explored thus far.

2 Given the vibration isolation table model in Figure vib.1—withm = 320

kg, k = 16000 N/m, and B = 1200 N–m/s—derive:

1. a linear graph model,

2. a state-space model,

3. the equilibrium state x for the unit step input,

4. a transfer function model,

5. an input-output differential equation model with input Vs and output

vm,

6. a solution for vm(t) for a unit step input Vs(t) = 1m/s for t > 0,

7. the system’s stability.
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Linear graph and state-space models
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Figure vib.2: linear graph of the isolation table.

3 The linear graph and normal tree are shown in Figure vib.2. Note that

there is an equilibrium for this system, so we are justified in ignoring

gravity and referencing any displacements to the static equilibrium

position.4 The state variables are the velocity of the mass vm and the force

through the spring fk and the system order is n = 2. The input, state, and

output vectors are

u =
[
Vs

]
x =

[
vm

fk

]
y =

[
vm

]
.

The elemental equations are as follows.

m v̇m =
1

m
fm

k ḟk = kvk

B fB = BvB
The continuity and compatibility equations are as follows.

branch continuity equation

m fm = fk + fB

link compatibility equation

k vk = Vs − vm

B vB = Vs − vm
The state equation can be found by substituting the continuity and

compatibility equations into the elemental equations, and eliminating fB, to

4For a discussion of this ignoring of gravity, see Lec. 05.4 lti.ghost.
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yield

ẋ =

[
−B/m 1/m

−k 0

]
x+

[
B/m

k

]
u (1a)

y =
[
1 0

]
x+

[
0
]
u. (1b)

Equilibrium

4 Let’s check to see if A is invertible by trying to compute its inverse:

A−1 =

[
−B/m 1/m

−k 0

]−1
(2)

=
1

k/m

[
0 −1/m

k −B/m

]
(3)

So it has an inverse, after all! Let’s use this to compute the equilibrium state:

x = −A−1Bu (4)

=
−m

k

[
0 −1/m

k −B/m

][
B/m

k

] [
1
]

(5)

=
−m

k

[
−k/m

0

]
(6)

=

[
1

0

]
(7)

So the system is in equilibrium with vm = 1m/s and fk = 0 N. Since vm is

also our output, we expect 1m/s to be our steady-state output value.

Transfer function model

5 The transfer function H(s) = Vm(s)/Vs(s) will be used as a bridge to the

input-output differential equation. The transfer function can be found from

the usual formula, from Lecture 03.7 ss.ss2tf2io,

H(s) = C(sI−A)−1B+D. (8)
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Let’s first compute (sI−A)−1:5

(sI−A)−1 =

([
s 0

0 s

]
−

[
−B/m 1/m

−k 0

])−1

(9a)

=

[
s+ B/m −1/m

k s

]−1
(9b)

=
1

(s+ B/m)(s) − (−1/m)(k)

[
s 1/m

−k s+ B/m

]
(9c)

=
1

s2 + (B/m)s+ k/m

[
s 1/m

−k s+ B/m

]
(9d)

Now we’re ready to compute the entirety of H:

H(s) =
1

s2 + (B/m)s+ k/m

[
1 0

] [ s 1/m

−k s+ B/m

][
B/m

k

]
+
[
0
]

(10a)

=
1

s2 + (B/m)s+ k/m

[
s 1/m

] [B/m
k

]
(10b)

=
(B/m)s+ k/m

s2 + (B/m)s+ k/m
. (10c)

Input-output differential equation

6 The input-output differential equation can be found from the reverse of

the procedure in Lecture 03.7 ss.ss2tf2io. Beginning from the transfer

function,

Vm

Vs
=

(B/m)s+ k/m

s2 + (B/m)s+ k/m
⇒ (11a)(

s2 + (B/m)s+ k/m
)
Vm = ((B/m)s+ k/m)Vs ⇒ (11b)

v̈m + (B/m)v̇m + (k/m)vm = (B/m)V̇s + (k/m)Vs. (11c)

Step response

7 The step response is found using superposition and the derivative

property of LTI systems. The forcing function f(t) = (B/m)V̇s + (k/m)Vs is

5See (� Rowell andWormley, 1997, Sec. A.4.3) for details on the matrix inverse.
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composed of two terms, one of which has a derivative of the input Vs.

Rather than attempting to solve the entire problem at once, we choose to

find the response for a forcing function f(t) = 1 (for t > 0)—that is, the unit

step response—and use superposition and the derivative property of LTI

systems to calculate the composite response.

Unit step response

8 The characteristic equation of Equation 11c is

λ2 + (B/m)λ+ k/m = 0⇒ (12a)

= −
B

2m
±

√
B2 − 4mk

2m
⇒ (12b)

λ1,2 = −1.875± j6.818. (12c)

The roots are complex, so the system will have a damped sinusoidal step

response. Let σ = −1.875 and ω = 6.818 such that λ1,2 = σ± jω. The
homogeneous solution is

vmh
(t) = C1e

λ1t + C2e
λ2t. (13)

In this form, C1 and C2 are complex. It is somewhat easier to deal with

vmh
(t) = C1e

σtejωt + C2e
σte−jωt (14a)

= eσt (C1 cosωt+ jC1 sinωt+ C2 cosωt− jC2 sinωt) (14b)

= eσt ((C1 + C2) cosωt+ j(C1 − C2) sinωt) . (14c)

Let C3 = C1 + C2 and C4 = j(C1 − C2) such that

vmh
(t) = eσt (C3 cosωt+ C4 sinωt) . (15)

This is a decaying (because σ < 0) sinusoid. A nice aspect of this new form is

that C3 and C4 are real.

9 Now, the particular solution can be found by assuming a solution of the

form vmp(t) = K for t > 0. Substituting this into Equation 11c (with forcing

f(t) = 1, we attempt to find a solution for K (that is, determine it):

(k/m)K = 1⇒ K = m/k. (16)
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Therefore, vmp(t) = m/k is a solution, and therefore the general solution is

vmstep(t) = vmh
(t) + vmp(t) (17a)

= eσt (C3 cosωt+ C4 sinωt) +m/k. (17b)

This leaves the specific solution, to be found applying the initial conditions

(assumed to be zero). Before we do so, however, we need the

time-derivative of the vmstep :

v̇mstep(t) = e
σt ((C3σ+ C4ω) cos(ωt) + (C4σ− C3ω) sin(ωt)) . (18)

Now, applying the initial conditions,

vmstep(0) = 0⇒ (19a)

C3 = −m/k (19b)

v̇mstep(0) = 0⇒ 0 = C3σ+ C4ω⇒ (19c)

C4 =
σ

ω
· m
k
. (19d)

10 It’s good form to re-write this as a single sinusoid:

vmstep(t) = vmh
(t) + vmp(t) (20a)

= A1e
σt cos(ωt+ψ1) +m/k (20b)

where we have used Lecture 01.2 math.trig to find

A1 =
√
C23 + C

2
4 (21a)

ψ1 = − arctan(C4/C3). (21b)

Superposition and the derivative property

11 Recall that the actual forcing function is a linear combination of the

input and its time-derivative. Therefore, it is expedient to re-write the

time-derivative of the unit step response:

v̇mstep(t) = A1e
σt (σ cos(ωt+ψ1) −ω sin(ωt+ψ1)) (22a)

= A1A2e
σt cos(ωt+ψ1 +ψ2) (22b)
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where

A2 =
√
σ2 +ω2 (22c)

ψ2 = − arctan(−ω/σ). (22d)

Finally, applying superposition and the derivative rule of LTI systems,

vm(t) = (B/m)v̇mstep(t) + (k/m)vmstep (23a)

=
B

m
A1A2e

σt cos(ωt+ψ1 +ψ2) +
k

m
A1e

σt cos(ωt+ψ1) + 1. (23b)

This is the solution!

12 It’s worth plotting the response. Begin by defining the system

parameters.

m = 320; % kg ... mass
k = 16000; % N/m ... spring constant
B = 1200; % N-m/s ... damping coefficient

Now define the secondary parameters.

lambda = -B/(2*m)+[-1,1]*sqrt(B^2-4*m*k)/(2*m);
sigma = real(lambda(1));
omega = imag(lambda(2));
K = m/k;
C3 = -m/k;
C4 = sigma/omega*m/k;
A1 = sqrt(C3^2+C4^2);
psi1 = -atan2(C4,C3);
A2 = sqrt(sigma^2+omega^2);
psi2 = -atan2(-omega,sigma);

Finally, the solution for vm(t) can be defined as an anonymous function.

vm = @(t) ...
A1*A2*B/m*exp(sigma*t).*cos(omega*t+psi1+psi2)+...
A1*k/m*exp(sigma*t).*cos(omega*t+psi1)+...
1;
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Figure vib.3: vibration table step response vm(t).

Now, plot over the first few seconds. The results are shown in Figure vib.3.

t_a = linspace(0,3,200);
h = figure;
p = plot(t_a,vm(t_a),'linewidth',1.5);
xlabel('time (s)')
ylabel('velocity $v_m(t)$ (m/s)',...

'interpreter','latex');
grid on
hgsave(h,'figures/temp');

13 Note that the steady-state output value agrees with that predicted by

the equilibrium analysis, above.

Stability

14 We have learned what we need in order to analyze the system’s

stability. The roots of the characteristic equation were λ1,2 = −1.875± j6.818,
which clearly all have negative real parts, and therefore the system is

asymptotically stable.


