05.5 lti.exe Exercises for Chapter 05 lti

Exercise 05.1 oil

A certain sensor used to measure displacement over time t is tested several times with input displacement $\mathfrak{u}_1(t)$ and a certain function $y_1(t)$ is estimated to properly characterize the corresponding voltage output. Assuming the sensor is linear and time-invariant, what would we expect the output sensor voltage $y_2(t)$ to be when the following input is applied?

$$u_2(t) = 3\dot{u}_1(t) - 5u_1(t) + \int_0^t 6u_1(\tau) d\tau$$
 (1)

Exercise 05.2 water

A system with input $\mathfrak{u}(t)$ and output $\mathfrak{y}(t)$ has the governing dynamical equation

$$2\ddot{y} + 12\dot{y} + 50y = -10\dot{u} + 4u. \tag{2}$$

- a. What is the equilibrium y(t) when u(t) = 6?
- b. Demonstrate the stability, marginal stability, or instability of the system.

Exercise 05.3 timmychalamet

The free response of a linear system with a given set of initial conditions is y_{fr} . The forced response of the system to input u_1 is y_{fo_1} . The forced response of the system to input u_2 is y_{fo_2} . What is the (specific) response of the system to the same set of initial conditions when $u_1(t) + u_2(t)$ is also applied? Express your answer in terms of y_{fr} , y_{fo_1} , and y_{fo_2} .

15 p.

Exercise 05.4 flopugh

Consider a linear system with state-space model matrices

$$A = \begin{bmatrix} -4 & 11 \\ 3 & -12 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}.$$
 (3)

For this system, respond to the following questions and imperatives.

- 1. What is the equilibrium state \bar{x} for input u(t) = 0?
- 2. Find the corresponding input-output ODE for the system.
- 3. Demonstrate the asymptotic stability, marginal stability, or instability of the system from the ODE.

06 trans

- 1 In this chapter, we explore the qualities of transient response—the response of the system in the interval during which initial conditions dominate.
- 2 We focus on characterizing first- and second-order linear systems; not because they're easiest (they are), but because nonlinear systems can be **linearized** about an **operating point** and because higher-order linear system responses are just *sums of first- and second-order responses*, making "everything look first- and second-order." Well, many things, at least.
- 3 In this chapter, we primarily consider systems represented by **single-input**, **single-output** (SISO) ordinary differential equations (also called io ODEs)—with time t, *output* y, *input* u, **forcing function** f, constant coefficients a_i , b_j , order n, and $m \le n$ for $n \in \mathbb{N}_0$ —of the form

$$\frac{d^n y}{dt^n} + \alpha_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + \alpha_1 \frac{dy}{dt} + \alpha_0 y = f, \text{ where}$$
 (1a)

$$f \equiv b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_1 \frac{du}{dt} + b_0 u.$$
 (1b)

Note that the forcing function f is related to but distinct from the input u. This terminology proves rather important.