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06.3 trans.secondo Second-order

systems in

transient response

1 Second-order systems have input-output differential equations of the

form
d2y

dt2
+ 2ζωn

dy

dt
+ω2ny = f(t) (1)

where ωn is called the natural frequency, ζ is called the (dimensionless)

damping ratio, and f is a forcing function that depends on the input u as

f(t) = b2
d2u

dt2
+ b1

du

dt
+ b0u. (2)

Systems with two energy storage elements—such as those with an inertial

element and a spring-like element—can be modeled as second-order.

2 For distinct roots (λ1 6= λ2), the homogeneous solution is, for some real

constants κ1 and κ2,

yh(t) = κ1e
λ1t + κ2e

λ2t (3)

where

λ1, λ2 = −ζωn ±ωn
√
ζ2 − 1. (4)

Free response

3 The free response yfr is found by applying initial conditions to the

homogeneous solution. With initial conditions y(0) and ẏ(0) = 0, the free

response is

yfr(t) = y(0)
1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
)
. (5)

There are five possibilities for the location of the roots λ1 and λ2, all

determined by the value of ζ.

ζ ∈ (−∞, 0): unstable This case is very undesirable because it means our

system is unstable and, given any nonzero input or output, will

explode to infinity.
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ζ = 0: undamped An undamped system will oscillate forever if

perturbed from zero output.

ζ ∈ (0, 1): underdamped Roughly speaking, underdamped systems

oscillate, but not forever. Let’s consider the form of the solution for

initial conditions and no forcing. The roots of the characteristic

equation are

λ1, λ2 = −ζωn ± jωn
√
1− ζ2 = −ζωn ± jωd (6)

where the damped natural frequency ωd is defined as

ωd ≡ ωn
√
1− ζ2. (7)

From Equation (5) for the free response, using Euler’s formulas to

write in terms of trigonometric functions, and the initial conditions

y(0) and ẏ(0) = 0, we have

yfr(t) = y(0)
e−ζωnt√
1− ζ2

cos(ωdt+ψ) (8)

where the phase ψ is

ψ = − arctan ζ√
1− ζ2

. (9)

This is an oscillation that decays to the value it oscillates about,

y(t)|t→∞ = 0. So any perturbation of an underdamped system will

result in a decaying oscillation about equilibrium.

ζ = 1: critically damped In this case, the roots of the characteristic

equation are equal:

λ1 = λ2 = −ωn (10)

So we must modify Equation 3 with a factor of t for the homogeneous

solution. The free response for initial conditions y(0) and ẏ(0) = 0, we

have

yfr(t) = y(0) (1+ωnt) e
−ωnt. (11)

This decays without oscillation, but just barely.
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Figure secondo.1: free response yfr(t) of a second-order system with initial
conditions y(0) and ẏ(0) = 0 for different values of ζ. Underdamped, critically
damped, and overdamped cases are displayed.

ζ ∈ (1,∞): overdamped Here the roots of the characteristic equation are

distinct and real. From Equation (5) with free response to initial

conditions y(0) and ẏ(0) = 0, we have the sum of two decaying real

exponentials. This response will neither overshoot nor oscillate—like

the critically damped case—but with even less gusto.

4 Figure secondo.1 displays the free response results. Note that a small

damping ratio results in overshooting and oscillation about the equilibrium

value. In contrast, large damping ratio results in neither overshoot nor

oscillation. However, both small and large damping ratios yield responses

that take longer durations to approach equilibrium than damping ratios

near unity. In terms of system performances, there are tradeoffs on either

side of ζ = 1. Slightly less than one yields faster responses that overshoot a

small amount. Slightly greater than one yields slower responses less prone

to oscillation.
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Step response

5 Second-order systems are subjected to a variety of forcing functions f. In

this lecture, we examine a common one: step forcing. In what follows, we

develop forced response yfo solutions.

6 Unit step forcing of the form f(t) = us(t), where us is the unit step

function, models abrupt changes to the input. The solution is found by

applying zero initial conditions (y(0) = 0 and ẏ(0) = 0) to the general

solution. If the roots of the characteristic equation λ1 and λ2 are distinct, the

forced response is

yfo(t) =
1

ω2n

(
1−

1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
))

(12)

where

λ1, λ2 = −ζωn ±ωn
√
ζ2 − 1. (13)

Once again, there are five possibilities for the location of the roots of the

characteristic equation λ1 and λ2, all determined by the value of ζ.

However, there are three stable cases: underdamped, critically damped, and

overdamped.

ζ ∈ (0, 1) underdamped In this case, the roots are distinct and complex:

λ1, λ2 = −ζωn ± jωd. (14)

From Equation 12, the forced step response is

yfo(t) =
1

ω2n

(
1−

e−ζωnt√
1− ζ2

cos(ωdt+ψ)
)

(15)

where the phase ψ is

ψ = − arctan ζ√
1− ζ2

. (16)

This response overshoots, oscillates about, and decays to 1/ω2n.

ζ = 1 critically damped The roots are equal and real:

λ1, λ2 = −ωn (17)
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so the forced step of Equation 12 must be modified; it reduces to

yfo(t) =
1

ω2n

(
1− e−ωnt(1+ωnt)

)
. (18)

This response neither oscillates nor overshoots its steady-state of
1

ω2n
,

but just barely.

ζ ∈ (1,∞) overdamped In this case, the roots are distinct and real, given

by Equation 13. The forced step given by Equation 12 is the sum of

two decaying real exponentials. These responses neither overshoot

nor oscillate about their steady-state of 1/ω2n. With increasing ζ,

approach to steady-state slows.

7 Figure secondo.2 displays the forced step response results. These

responses are inverted versions of the free responses of

Lecture 06.3 trans.secondo. Note that a small damping ratio results in

overshooting and oscillation about the steady-state value. In contrast, large

damping ratio results in neither overshoot nor oscillation. However, both

small and large damping ratios yield responses that take longer durations to

approach equilibrium than damping ratios near unity. For this reason, the

damping ratio of a system should be close to ζ = 1. There are tradeoffs on

either side of one. Slightly less yields faster responses that overshoot a small

amount. Slightly greater than one yields slower responses less prone to

oscillation.

Impulse and ramp responses

8 The response to all three singularity inputs are included in

Table secondo.1. These can be combined with the free response of

Equation 2 using superposition.

An example with superposition

9 The results of the above are powerful not so much in themselves, but

when they are wielded with the principle of superposition, as the following

example shows.
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Figure secondo.2: forced step response yfo(t) of a second-order system for
different values of ζ. Underdamped, critically damped, and overdamped cases
are displayed.

Example 06.3 trans.secondo-1 re:

MRFM

cantilever

beam

with

initial

condition

and

forcing

In magnetic resonance force microscopy (MRFM), the primary detector is

a small cantilever beam with a magnetic tip. Model the beam as a spring-

mass-damper system with mass m = 6 pg,a spring constant k = 15 mN/m,

and damping coefficient B = 37.7 · 10−15 N·s/m. Magnetic input forces on

the beam u(t) are applied directly to the magnetic tip. That is, a Newtonian

force-analysis yields the input-output ODE

mÿ+ Bẏ+ ky = u,

where ymodels the motion of the tip.

1. What is the natural frequency ωn?

2. What is the damping ratio ζ?

3. Find the free response for initial conditions y(0) = 10 nm and ẏ(0) = 0.

4. Find the impulse (forced) response for input u(t) = 3δ(t).
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Table secondo.1: responses of system
d2y

dt2
+ 2ζωn

dy

dt
+ ω2ny = f to different

singularity forcing. Note that τ1 = −1/λ1, τ2 = 1/λ2, and ψ = − arctan(ζ/
√
1− ζ2).

damping f(t) characteristic response

0 6 ζ < 1 δ(t)
e−ζωnt

ωn
√
1− ζ2

sin(ωdt)

us(t)
1

ω2n

(
1−

e−ζωnt√
1− ζ2

cos(ωdt+ψ)
)

ur(t)
1

ω2n

(
t+

e−ζωnt

ωn

(
2ζ cosωdt+

2ζ2 − 1√
1− ζ2

sinωdt
)

−
2ζ

ωn

)

ζ = 1 δ(t) te−ωnt

us(t)
1

ω2n

(
1− e−ωnt −ωnte

−ωnt
)

ur(t)
1

ω2n

(
t+

2

ωn
e−ωnt + te−ωnt −

2

ωn

)
ζ > 1 δ(t)

1

2ωn
√
ζ2 − 1

(
e−t/τ1 − e−t/τ2

)
us(t)

1

ω2n

(
1−

ωn

2
√
ζ2 − 1

(
τ1e

−t/τ1 − τ2e
−t/τ2

))

ur(t)
1

ω2n

(
t−

2ζ

ωn
+

ωn

2
√
ζ2 − 1

(
τ21e

−t/τ1 − τ22e
−t/τ2

))

5. Find the total response for the initial condition and forcing, from

above, are both applied.

aOne pg = 10−12g = 10−15kg.
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