07.2 ssresp.eig Linear algebraic eigenproblem

1 The linear algebraic eigenproblem can be simply stated. For $n \times n$ real matrix $A, n \times 1$ complex vector \mathfrak{m}, and $\lambda \in \mathbb{C}, m$ is defined as an eigenvector of A if and only if it is nonzero and

$$
A m=\lambda m
$$

for some λ, which is called the corresponding eigenvalue. That is, m is an eigenvector of A if its linear transformation by A is equivalent to its scaling; i.e. an eigenvector of A is a vector of which A changes the length, but not the direction.
2 Since a matrix can have several eigenvectors and corresponding eigenvalues, we typically index them with a subscript; e.g. \boldsymbol{m}_{i} pairs with λ_{i}.

Solving for eigenvalues

Eq. 1 can be rearranged:

$$
(\lambda I-A) m=0 .
$$

For a nontrivial solution for m,

$$
\operatorname{det}(\lambda I-A)=0,
$$

which has as its left-hand-side a polynomial in λ and is called the characteristic equation. We define eigenvalues to be the roots of the characteristic equation.

Box 07 ssresp. 1 eigenvalues and roots of the characteristic equation

If A is taken to be the linear state-space representation A, and the statespace model is converted to an input-output differential equation, the resulting ODE's "characteristic equation" would be identical to this matrix characteristic equation. Therefore, everything we already
understand about the roots of the "characteristic equation" of an i/o ODE-especially that they govern the transient response and stability of a system—holds for a system's A-matrix eigenvalues.

3 Here we consider only the case of n distinct eigenvalues. For eigenvalues of (algebraic) multiplicity greater than one (i.e. repeated roots), see the discussion of Appendix 02.1 adv.eig.

Solving for eigenvectors

4 Each eigenvalue λ_{i} has a corresponding eigenvector \boldsymbol{m}_{i}. Substituting each λ_{i} into Eq. 2, one can solve for a corresponding eigenvector. It's important to note that an eigenvector is unique within a scaling factor. That is, if $\mathfrak{m}_{\mathfrak{i}}$ is an eigenvector corresponding to λ_{i}, so is $3 \mathfrak{m}_{\mathfrak{i}} \cdot{ }^{3}$

Example 07.2 ssresp.eig-1

Let

$$
A=\left[\begin{array}{cc}
2 & -4 \\
-1 & -1
\end{array}\right]
$$

\therefore Find the eigenvalues and eigenvectors of A.
eigenproblem
for a
2×2
matrix

[^0]

5 Several computational software packages can easily solve for eigenvalues and eigenvectors. See Lec. 07.3 ssresp.eigcomp for instruction for doing so in Matlab and Python.

[^0]: ${ }^{3}$ Also of note is that λ_{i} and m_{i} can be complex.

