07.4 ssresp.diag Diagonalizing basis

1 It is useful to transform a system's state vector x into a special basis that diagonalizes-leaves nonzero components along only the diagonal-the system's A-matrix. For systems with n distinct eigenvalues, to which we limit ourselves in this discussion, ${ }^{4}$ this is always possible. In diagonalized form, it will be relatively easy to solve for the state transition matrix $Ф$.

Changing basis in the state equation

2 As with all basis transformations, the basis transformation we seek can be written

$$
x=P x^{\prime} \quad \Rightarrow x^{\prime}=P^{-1} x
$$

where P is the transformation matrix, x is a representation of the state vector in the original basis, and x^{\prime} is a representation of the state vector in the new basis. ${ }^{5}$
3 Substituting this transformation into the standard linear state-model equations yields the model

$$
\begin{aligned}
& \dot{x}^{\prime}=\underbrace{P^{-1} A P}_{A^{\prime}} x^{\prime}+\underbrace{P^{-1} B}_{B^{\prime}} u \\
& y=\underbrace{C P}_{C^{\prime}} x^{\prime}+\underbrace{D}_{D^{\prime}} u .
\end{aligned}
$$

Modal and eigenvalue matrices

4 Let a state equation have matrix A with n distinct eigenvalues $\left(\lambda_{i}\right)$ and eigenvectors ($\boldsymbol{m}_{\mathfrak{i}}$). Let the eigenvalue matrix \wedge be defined as

[^0]\[

\Lambda=\left[$$
\begin{array}{llll}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}
$$\right]
\]

5 Furthermore, let the modal matrix M be defined as

$$
M=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
m_{1} & m_{2} & \cdots & m_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Diagonalization of the state equation

6 Let the modal matrix M be the transformation matrix for our state-model. Then ${ }^{6} x^{\prime}=M^{-1} x$.
7 The state equation becomes

$$
\begin{equation*}
\dot{x}^{\prime}=M^{-1} A M x^{\prime}+M^{-1} B u . \tag{4}
\end{equation*}
$$

The eigenproblem implies that

That is, $A^{\prime}=\Lambda!$ Recall that Λ is diagonal; therefore, we have diagonalized the state-space model. In full-form, the diagonalized model is

$$
\begin{aligned}
& \dot{x}^{\prime}=\underbrace{\wedge}_{A^{\prime}} x^{\prime}+\underbrace{M^{-1} B}_{B^{\prime}} u \\
& y=\underbrace{C M}_{C^{\prime}} x^{\prime}+\underbrace{D}_{D^{\prime}} u .
\end{aligned}
$$

[^1]
Computing the state transition matrix

8 Recall our definition of the state transition matrix $\Phi(\mathrm{t})=e^{A \mathrm{t}}$. Directly applying this to the diagonalized system of Eq. 5,

$$
\begin{align*}
\Phi^{\prime}(t) & =e^{\wedge t} \tag{6a}\\
& =\left[\begin{array}{llll}
e^{\lambda_{1} t} & & & 0 \\
& e^{\lambda_{2} t} & & \\
& & \ddots & \\
0 & & & e^{\lambda_{n} t}
\end{array}\right] . \tag{6b}
\end{align*}
$$

In this last equality, we have used the diagonal property of the state transition matrix, defined in Lec. 07.1 ssresp.response.
9 Recall that the free response solution to the state equation is given by the initial condition and state transition matrix, so

$$
\begin{aligned}
x_{\mathrm{fr}}^{\prime}(\mathrm{t}) & =\Phi^{\prime}(\mathrm{t}) \mathrm{x}^{\prime}(0) \\
& =x_{1}^{\prime}(0) e^{\lambda_{1} t}+x_{2}^{\prime}(0) e^{\lambda_{2} t}+\cdots+x_{n}^{\prime}(0) e^{\lambda_{n} t}
\end{aligned}
$$

where the initial conditions are $x^{\prime}(0)=M^{-1} x(0)$. We have completely decoupled each state's free response, one of the remarkable qualities of the diagonalized system.
10 At this point, one could simply solve the diagonalized system for $x^{\prime}(t)$, then convert the solution to the original basis with $x(t)=M x^{\prime}(t)$.
11 Sometimes, we might prefer to transform the diagonalized-basis state transition matrix into the original basis. The following is a derivation of that transformation.
12 Beginning with the free response solution in the diagonalized-basis and transforming the equation into the original basis, we find an expression for the original state transition matrix, as follows.

$$
\begin{aligned}
x_{\mathrm{fr}}^{\prime}(\mathrm{t}) & =\Phi^{\prime}(\mathrm{t}) x^{\prime}(0) \Rightarrow \\
\mathrm{M}^{-1} x_{\mathrm{fr}}(\mathrm{t}) & =\Phi^{\prime}(\mathrm{t}) M^{-1} x(0) \Rightarrow \\
x_{\mathrm{fr}}(\mathrm{t}) & =\underbrace{\mathrm{M} \Phi^{\prime}(\mathrm{t}) \mathrm{M}^{-1}}_{\Phi(\mathrm{t})} x(0) .
\end{aligned}
$$

This last expression is just the free response solution in the original basis, so we can identify

$$
\begin{equation*}
\Phi(\mathrm{t})=M \Phi^{\prime}(\mathrm{t}) \mathrm{M}^{-1} . \tag{8}
\end{equation*}
$$

This is a powerful result. Eq. 8 is the preferred method of deriving the state transition matrix for a given system. The eigenvalues give Φ^{\prime} and the eigenvectors give M.

Example 07.4 ssresp.diag-1
For the state equation

$$
\dot{x}=\left[\begin{array}{cc}
-2 & 2 \\
2 & -3
\end{array}\right] x+\left[\begin{array}{c}
1 \\
-1
\end{array}\right] u
$$

\because find the state's free response to initial condition $x(0)=\left[\begin{array}{ll}2 & -1\end{array}\right]^{\top}$.
re: state free response

[^0]: ${ }^{4}$ See Appendix 02.1 adv.eig for general considerations.
 ${ }^{5} \mathrm{We}$ are being a bit fast-and-loose with terminology here: a vector is an object that does not change under basis transformation, only its components and basis vectors do. However, we use the common notational and terminological abuses.

[^1]: ${ }^{6}$ As long as there are n distinct eigenvalues, M is invertible.

