07.5 ssresp.vibe A vibration example with two modes

1 In the following example, we explore the a mechanical vibration example, especially with regard to its modes of vibration. Both undamped and (under)damped cases are considered and we discover the effects of damping.

Example 07.5 ssresp.vibe-1

re:
vibration
with
two
modes

Figure vibe.1: schematic of the two-mass system.

3 The state-space model A-matrix is given as

$$
A=\left[\begin{array}{cccc}
-B / m_{1} & -1 / m_{1} & B / m_{1} & 0 \\
\mathrm{~K}_{1} & 0 & -\mathrm{K}_{1} & 0 \\
B / m_{2} & 1 / m_{2} & -B / m_{2} & -1 / m_{2} \\
0 & 0 & \mathrm{~K}_{2} & 0
\end{array}\right]
$$

with parameters as follows:

- $\mathrm{m}_{1}=0.1 \mathrm{~kg}$
- $\mathrm{m}_{2}=1.1 \mathrm{~kg}$
- $\mathrm{K}_{1}=8 \mathrm{~N} / \mathrm{m}$

4 Two different values for B will be considered: 0 and $20 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$. We will explore the modes of vibration in each case and plot a corresponding free response.
${ }^{a}$ This common situation appears in a slightly modified form in Rowell and Wormley (1997).

Setting up the problem

We analyze the problem with Python. First, we load packages for symbolic, numeric, and graphical analysis, as follow:

```
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
```

The A matrix is first defined symbolically.

```
sp.var("m_1, m_2, K_1, K_2, B", real=True)
A = sp.Matrix([
    [-B/m_1, -1/m_1, B/m_1, 0],
    [K_1, 0, -K_1, 0],
    [B/m_2, 1/m_2, -B/m_2, -1/m_2],
    [0, 0, K_2, 0]
])
```

Now define dictionaries for the parameter values.

```
p = {
    m_1: 0.1, # kg
    m_2: 1.1, # kg
    K_1: 8, # N/m
    K_2: 9 # N/m
}
```

```
pB1 = {B: 0} # N/(rad/s), without damping
pB2 = {B: 20} # N/(rad/s), with damping
```


Without damping

5 Without damping, we expect the system to be marginally stable and have two pairs of second-order undamped subsystems with their own unique natural frequencies. The numerical A matrix can be computed by substituting in the parameters in p and $\mathrm{pB1}$, as follows:

```
A_1 = np.array(A.subs(p).subs(pB1), dtype=float)
print(A_1)
\(\left[\begin{array}{cllcll}{\left[\begin{array}{lllll} & 0 . & -10 . & 0 . & 0 . \\ {[ } & 8 . & 0 . & -8 . & 0 .\end{array}\right]} \\ {[ } & 0 . & 0.90909091 & 0 . & -0.90909091] \\ {[ } & 0 . & 0 . & 9 . & 0 . & ]\end{array}\right]\)
```

6 To explore the modes of vibration, we consider the eigendecomposition of A.

```
l_,M_ = np.linalg.eig(A_1)
thr = 1e-14 # threshold for calling something 0
l_.real[abs(l_.real) < thr] = 0.0 # zeroing small real parts
```

7 Let's take a closer look at the eigenvalues.

```
print(l_)
```

$[0 .+9.38179379 j$ 0.-9.38179379j 0.+2.726993j 0.-2.726993j]

8 So we have two pairs of purely imaginary eigenvalues. We would say, then, that there are two "modes of vibration," and similarly two secondorder systems comprising this fourth-order system. When we consider what the natural frequency and damping ratio is for each pair, we're considering - the natural frequencies associated with each "mode of vibration."
$\therefore 9$ For a second-order system (see Lec. 06.3 trans.secondo), the roots of the characteristic equation, which are equal to the eigenvalues corresponding to that second-order pair, are given in terms of natural frequency ω_{n} and damping ratio ζ :

10 So the imaginary part is nonzero only when $\zeta \in[0,1)$, that is, when the system is underdamped or undamped. In this case,

11 This, taken with the fact that the eigenvalues in $1_{_}$have zero real parts, implies either ω_{n} or ζ is zero. But if ω_{n} is zero, the eigenvalues would all be zero, which they are not. Therefore, $\zeta=0$ for both pairs of eigenvalues.
12 This leaves us with eigenvalues:

$$
\pm j \omega_{n_{1}} \quad \text { and } \quad \pm j \omega_{n_{2}} .
$$

13 So we can easily identify the natural frequencies $\omega_{n_{1}}$ and $\omega_{n_{2}}$ associated with each mode as follows.

```
wn_1 = np.imag(1_[0]);
wn_2 = np.imag(l_[2]);
print(f"Natural frequencies (rad/s): {wn_1} and {wn_2}")
```

Natural frequencies (rad/s): 9.38179378603641 and 2.726992997943728

Free response
14 Let's compute the free response to some initial conditions. The free state response is given by
$: 15$ So we can find this from the state transition matrix Φ, which is known from Lec. 07.4 ssresp.diag to be \qquad .

16 First, we construct Φ^{\prime} symbolically.

```
sp.var("t", real=True)
L = sp.diag(*list(sp.Matrix(l_)*t)) # Eigenvalue matrix \Lambda (symbolic)
M = sp.Matrix(M_) # Modal matrix (symbolic)
Phi_p = sp.exp(L)
pprint(Phi_p)
```

Matrix ([
[1.0*exp $(9.38179378603641 * I * \mathrm{t})$, 0,
$\hookrightarrow 0$,
[$0,1.0 * \exp (-9.38179378603641 * I * t)$,
$\hookrightarrow \quad 0$,
[0,
$\hookrightarrow \quad 1.0 * \exp (2.72699299794373 * I * t)$,
[0,
0 ,
$\hookrightarrow \quad 0,1.0 * \exp (-2.72699299794373 * I * t)]])$

17 Now we can apply our transformation.

Phi $=M *$ Phi_p $* M . \operatorname{inv}()$

18 So our symbolic solution is to multiply the initial conditions by this matrix.

```
x_0 = sp.Matrix([[1], [0], [0], [0]]) # Initial condition
x = Phi*x_0 # Free response (symbolic, messy)
```


Plotting a free response

19 Let's make the symbolic solution into something we can evaluate numerically and plot, a Numpy function.

```
x_fun = sp.lambdify(t,x)
```

: 20 Now let's set up our time array and state solution for the plot.

```
t_ = np.linspace (0,5,300)
x_ = np.squeeze(
    np.real(x_fun(t_))
)
```

21 Plot the state responses through time. The output is shown below.

```
fig, ax = plt.subplots()
ax.plot(t_, x_.T)
ax.set_xlabel('time (s)')
ax.set_ylabel('state free response')
ax.legend(['$x_1$', '$x_2$', '$x_3$', '$x_4$'])
```

<matplotlib.legend.Legend at 0x127e64e30>

Figure vibe.2: png

With a little damping

22 Now consider the case when the damping coefficent B is nonzero. Let's recompute A and the eigendecomposition.

```
A_2 = np.array(A.subs(p).subs(pB2), dtype=float)
```

print(A_2)

[[-200.	-10.	200.	0.
[8.	0.	-8.	$0.1]$
[18.18181818	0.90909091	-18.18181818	-0.90909091]
[0.	0.	9.	0.1 JJ

:23 To explore the modes of vibration, we consider the eigendecomposition of A.
$l_{-}, M_{-}=n p . l i n a l g \cdot \operatorname{eig}\left(A_{-} 2\right)$

24 Let's take a closer look at the eigenvalues.

```
print(l_)
```

```
[-2.17777946e+02+0.j -1.53514941e-03+2.73840736j
```

$-1.53514941 \mathrm{e}-03-2.73840736 \mathrm{j}-4.00801807 \mathrm{e}-01+0 . \mathrm{j}$]

25 We can see that one of the second-order systems is now "overdamped" or, equivalently, has split into two first-order systems. The other is now underdamped (but barely damped). Let's compute the natural frequency of the remaining vibratory mode.

```
wn_1 = np.imag(l_[1]);
print(f"Natural frequency (rad/s): {wn_1}")
```

Natural frequency (rad/s): 2.7384073593287575
26 So the effect of damping was to eliminate the $\approx 10 \mathrm{rad} / \mathrm{s}$ mode and leave us with a slightly modified version of the $\approx 2.7 \mathrm{rad} / \mathrm{s}$ mode.

Free response
27 Let's compute the free response to some initial conditions. The free state response is given by

28 So we can find this from the state transition matrix Φ, which is known from Lec. 07.4 ssresp.diag to be
29 First, we construct Φ^{\prime} symbolically.

```
L = sp.diag(*list(sp.Matrix(l_)*t)) # Eigenvalue matrix \Lambda (symbolic)
M = sp.Matrix(M_) # Modal matrix (symbolic)
Phi_p = sp.exp(L)
pprint(Phi_p)
```

Matrix ([
[1.0*exp $(-217.777946076145 * t)$,
\hookrightarrow, 0,
\hookrightarrow 0] ,
[0, 1.0*exp $(t *(-0.00153514941381959+$
$\hookrightarrow 2.73840735932876 * I)$),
$\hookrightarrow 0$, 0],
[0,
$\hookrightarrow \quad 0,1.0 * \exp (t *(-0.00153514941381959-2.73840735932876 * I))$,
\hookrightarrow 0],
[0,
\hookrightarrow 0, 0,
$\hookrightarrow \quad 1.0 * \exp (-0.400801806845378 * t)]])$

30 Now we can apply our transformation.

```
Phi = M*Phi_p*M.inv()
```

31 So our symbolic solution is to multiply the initial conditions by this matrix.

```
x_0 = sp.Matrix([[1], [0], [0], [0]]) # Initial condition
x = Phi*x_0 # Free response (symbolic, messy)
```

Plotting a free response
32 Let's make the symbolic solution into something we can evaluate numerically and plot, a Numpy function.

```
x_fun = sp.lambdify(t,x)
```

-33 Now let's set up our time array and state solution for the plot.

```
t_ = np.linspace (0,5,300)
x_ = np.squeeze(
    np.real(x_fun(t_))
)
```

34 Plot the state responses through time. The output is shown below.

```
fig, ax = plt.subplots()
ax.plot(t_, x_.T)
ax.set_xlabel('time (s)')
ax.set_ylabel('state free response')
ax.legend(['$x_1$', '$x_2$', '$x_3$', '$x_4$'])
```

<matplotlib.legend.Legend at 0x137a6acf0>

Figure vibe.3: png

