
SIMULATING STATE-SPACE RESPONSE 235

07.7 ssresp.sim Simulating state-space

response

1 Ahem.7

For many nonlinear models, numerical solution of the state equation is

required. For linear models, we can always solve them analytically using

the methods of this chapter. However, due to its convenience, we will often

want to use numerical techniques even when analytic ones are available.

Matlab has several built-in and Control Systems Toolbox functions for

analyzing state-space system models, especially linearmodels. We’ll explore

a few, here.

Consider, for instance, a linear state model with the following A, B, C, and D

matrices:

A =

−3 4 5

0 −2 3

0 −6 1

 B =

10
1

 C =

[
1 0 0

0 −1 0

]
D =

[
0

0

]
. (1a)

A = [-3,4,5;0,-2,3;0,-6,1];
B = [1;0;1];
C = [1,0,0;0,-1,0];
D = [0;0];

For a step input u(t) = 3us(t) and initial state x(0) =
[
1 2 3

]>
, let’s

compare analytic and numerical solutions for the output response y(t).

u = @(t) 3*ones(size(t)); % for t>=0
x_0 = [1; 2; 3];

7The source of this lecture can be downloaded as a Matlab m-file at http://ricopic.
one/dynamic_systems/source/simulating_state_space_response.m.

http://ricopic.one/dynamic_systems/source/simulating_state_space_response.m
http://ricopic.one/dynamic_systems/source/simulating_state_space_response.m


SIMULATING STATE-SPACE RESPONSE 236

Analytic solution

For an analytic solution, we’ll use a rearranged version of ??.8

y(t) = CΦ(t)x(0) + CΦ(t)

ˆ t
0

Φ(−τ)Bu(τ)dτ+Du(t). (2a)

First, we need the state transition matrix Φ(t), so we consider the

eigenproblem.

[M,L] = eig(A)

M =

1.0000 + 0.0000i 0.7522 + 0.0000i 0.7522 + 0.0000i
0.0000 + 0.0000i 0.3717 + 0.0810i 0.3717 - 0.0810i
0.0000 + 0.0000i 0.0787 + 0.5322i 0.0787 - 0.5322i

L =

-3.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i -0.5000 + 3.9686i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -0.5000 - 3.9686i

Note that, when assigning its output to two variables M and L, the eig
function returns the modal matrix to M and the eigenvalue matrix to L. The
modal matrix of eigenvectors M has each column (eigenvector) normalized to

unity. Also notice that M and L are complex. The imaginary parts of two

eigenvalues and their corresponding eigenvectors are significant. Finally,

since the real parts of the all eigenvalues are negative, the system is stable.

The “diagonal”-basis state transition matrix Φ ′(t) is simply

Φ ′(t) = eΛt. (3)

Let’s define this as an “anonymous” function.

8Although we call this the ”analytic” solution, we are not solving for a detailed symbolic
expression, although we *could*. In fact, Eq. 2 *is* the analytic solution and what follows is
an attempt to represent it graphically.



SIMULATING STATE-SPACE RESPONSE 237

Phi_p = @(t) diag(diag(exp(L*t))); % diags to get diagonal mat

The original-basis state transition matrix Φ(t) is, from ??,

Φ(t) =MΦ ′(t)M−1. (4)

M_inv = M^-1; % compute just once, not on every call
Phi = @(t) M*Phi_p(t)*M_inv;

Free response

The free response is relatively straightforward to compute.

t_a = 0:.05:5; % simulation time
y_fr = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fr(:,i) = C*Phi(t_a(i))*x_0;
end
y_fr(:,1:3) % first three columns

ans =

1.0000 - 0.0000i 1.8922 - 0.0000i 2.5646 - 0.0000i
-2.0000 + 0.0000i -2.2030 + 0.0000i -2.3105 + 0.0000i

A time array t_awas defined such that Phi could be evaluated. The first

three columns of yfr are printed for the first three moments in time. Note

how there’s a “hanging chad” of imaginary components. Before we realize
them, let’s make sure they’re negligibly tiny.

max(max(abs(imag(y_fr))))
y_fr = real(y_fr);

ans =

5.2907e-16



SIMULATING STATE-SPACE RESPONSE 238

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

time (s)

fr
ee

re
sp
o
n
se

y
fr
(t
)

y1
y2

Figure sim.1: free response yfr.

The results are plotted in Fig. sim.1. As we might expect from the

eigenvalues, the free responses of both outputs oscillate and decay.

Forced response

Now, there is the matter of integration in Eq. 2. Since Matlab does not excel

in symbolic manipulation, we have chosen to avoid attempting to write the

solution, symbolically.9 For this reason, we choose a simple numerical

(trapezoidal) approximation of the integral using the trapz function.
First, the integrand can be evaluated over the simulation interval.

integrand_a = NaN*ones(size(C,2),length(t_a)); % initialize
for i = 1:length(t_a)

tau = t_a(i);
integrand_a(:,i) = Phi(-tau)*B*u(tau);

end

Now, numerically integrate.

integral_a = zeros(size(integrand_a));
for i = 2:length(t_a)

i_up = i; % upper limit of integration

9Mathematica or SageMath would be preferrable for this.



SIMULATING STATE-SPACE RESPONSE 239

integral_a(:,i) = ... % transposes for trapz
trapz(t_a(1:i_up)',integrand_a(:,1:i_up)')';

end

Now, evaluate the forced response at each time.

y_fo = NaN*ones(size(C,1),length(t_a)); % initialize
for i = 1:length(t_a)

y_fo(:,i) = C*Phi(t_a(i))*integral_a(:,i);
end
y_fo(:,1:3) % first three columns

ans =

0.0000 + 0.0000i 0.1583 - 0.0000i 0.3342 - 0.0000i
0.0000 + 0.0000i -0.0109 + 0.0000i -0.0426 + 0.0000i

max(max(abs(imag(y_fo))))
y_fo = real(y_fo);

ans =

2.1409e-16

The forced response is shown in Fig. sim.2, which shows damped

oscillations.

Total response

The total response is found from the sum of the free and forced responses:

y(t) = yfr + yfo. We can simply sum the arrays.

y_t = y_fr + y_fo;

The result is plotted in Fig. sim.3.



SIMULATING STATE-SPACE RESPONSE 240

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

time (s)

fo
rc
ed

re
sp
o
n
se

y
fo
(t
) y1

y2

Figure sim.2: forced response yfo.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

4

time (s)

to
ta
l
re
sp
o
n
se

y
(t
)

y1
y2

Figure sim.3: total response y.

Numerical solution

The numerical solution of the state equations is rather simple using Matlab’s

ss and step or lsim commands, as we show, here. First, we define an ss
model object—a special kind of object that encodes a state-space model.

sys = ss(A,B,C,D);

At this point, using the step function would be the easiest way to solve for

the step response. However, we choose the more-general lsim for



SIMULATING STATE-SPACE RESPONSE 241

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

4

time (s)

to
ta
l
re
sp
o
n
se

(n
u
m
er
ic
al
)
y
(t
)

y1
y2

Figure sim.4: total response y from lsim.

demonstration purposes.

y_t_num = lsim(sys,u(t_a),t_a,x_0);

This total solution is shown in Fig. sim.4.

d_y = y_t-y_t_num';

Fig. sim.5 shows a plot of the differences between the analytic total solution

y_t and the numerical y_t_num for each output. Note that calling this

“error” is a bit presumptuous, given that we used numerical integration in

the analytic solution. If a more accurate method is desired, working out the

solution, symbolically, is the best.



SIMULATING STATE-SPACE RESPONSE 242

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−4

−2

0

2

4
·10−3

time (s)

to
ta
l
re
sp
o
n
se

er
ro
r

y1
y2

Figure sim.5: total response error y_t-y_t_num.


