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08.5 thermoflu.fem Thermal finite
element model

Example 08.5 thermoflu.fem-1 res
T thermal
Ts | | insulation finite
Tx J element
L ! model

Figure fem.1: an insulated bar.

Consider the long homogeneous copper bar of Fig. fem.1, insulated around
its circumference, and initially at uniform temperature. At time t = 0, the
temperature at one end of the bar (x = 0) is increased by one Kelvin. We wish
to find the dynamic variation of the temperature at any location x along the
bar, at any time t > 0.

Construct a discrete element model of thermal conduction in the bar, for
which the following parameters are given for its length L and diameter d.

L=1; /m
0.01; Z m

Geometrical considerations

The cross-sectional area for the bar is as follows.

a = pi/4*d~2; % m™2 z-sectional area

. Dividing the bar into n sections (“finite elements”) such that we have length
 of each dx gives the following.
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n = 100; 7 number of chunks
dx = L/n; / m ... length of chunk

Material considerations

The following are the material properties of copper.

cp = 390; 7 SI ... specific heat capacity
rho = 8920; 7 SI ... density

ks = 401; 7 SI ... thermal conductivity
Lumping

From the geometrical and material considerations above, we can develop a
lumped thermal resistance R and thermal capacitance c of each cylindrical
section of the bar of length dx. From Eq. 6 and Eq. 4, these parameters are

as follows.

R = dx/(ks*a); / thermal resistance
dV = dx*a; / m~ 3 ... section wolume
dm = rho*dV; / kg ... section mass

c = dm*cp; / section volume

Linear graph model

. The linear graph model is shown in Fig. fem.2 with the corresponding

< normal tree overlayed.
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Figure fem.2: a linear graph of the insulated bar.

State-space model

The state variables are clearly the temperatures of Ci: Tc,, -+, Tc
Therefore, the order of the system is n.

The state, input, and output variables are
T
X = [TC] "'Tcn} , u= [TS} ,and y=x.

Elemental, continuity, and compatibility equations Consider the
elemental, continuity, and compatibility equations, below, for the first, a
middle, and the last elements. The following makes the assumption of
homogeneity, which yields R; = R and C; = C.

element elemental eq. continuity eq. compatibility eq.
C Te, =¢dc,  de, =dr, —dr,

R; qr, = & Tr, T, =Ts —Tc,

C; Teo=¢de. 4 = AR — AR,

R; qr, = %TR Tr, =Tc, , —Tc,

Cn Te, =¢dc,  dc, = dr,

R qr, = = TRy Tk, =Tc, , —Tc.

. Deriving the state equations for sections 1, i, and n  For each of the first,
ca representative middle, and the last elements, we can derive the state
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- equation with relatively few substitutions, as follows.

Tc] = %qcl

= %(qm —dRr,)

= %(TR] —Tg,)

- RLC(TS—TC1 —Tc, +Tc,)

_ RLC(TS —2Te, +Te,).
Te, = %in

= %(QRi —qRiy)

= ];—C(TRi —Triy)

— RLC(TCH —2Tc, + Tey,)-
Te, = %qcn

1
= Ean
n
; = L(Tcn,1 —Tc,).

RC
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E Let T = RC. The A and B matrices are, then

2/t 1/t 0 - 0 0 0
1)t -2/t 1/t -~ 0 0 0
A= 1/t =2/t 1/t
0 0 o 0 0
0 0 o 0 0
1/t
0
B =
L 0 nxl

I, the matrices are:

C=Inxn and D =0p,x1.

Simulation of a step response

Define the A matrix.

1/t

-2/t
1/t

1/t

270

—1/T_

The outputs are the states: y = x. Or, in standard form with identity matrix

A = zeros(n);

% first row

A(1,1) = -2/(R*c);

A(1,2) = 1/(R*c);

7 last row

A(n,n-1) = 1/(R*c);

A(n,n) = -1/(R*c);

% middle rows

for i = 2:(n-1)
A(i,i-1) = 1/(R*c);
AGi,i) = -2/(R*c);
A(i,i+1) = 1/(Rxc);

end

* Now define B, C, and D.
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B = zeros([n,1]1);
B(1) = 1/(R*c);

C = eye(n);

D = zeros([n,1]);

Create a state-space model.

sys = ss(4,B,C,D);

Simulate a unit step in the input temperature.

Tmax = 1200; 7 sec ... final sim time

t = linspace(0,Tmax,100);

y = step(sys,t);

Plot the step response To prepare for creating a 3D plot, we need to make

a grid of points.

x = dx/2:dx: (L-dx/2);
[X,T] = meshgrid(x,t);

< Now we're ready to plot. The result is shown in Fig. fem.3.
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Figure fem.3: spatiotemporal thermal response.
figure

contourf (X,T,y)
shading(gca, 'interp')
xlabel('x"')
ylabel('time')
zlabel('temp (K)')




