09.1 four.series Fourier series

1 Fourier series are mathematical series that can represent a periodic signal as a sum of sinusoids at different amplitudes and frequencies. They are useful for solving for the response of a system to periodic inputs. However, they are probably most important conceptually: they are our gateway to thinking of signals in the frequency domain-that is, as functions of frequency (not time). To represent a function as a Fourier series is to analyze it as a sum of sinusoids at different frequencies ${ }^{1} \omega_{n}$ and amplitudes a_{n}. Its frequency spectrum is the functional representation of amplitudes a_{n} versus frequency ω_{n}.
2 Let's begin with the definition.

Definition 09 four.1: Fourier series: trigonometric form

The Fourier analysis of a periodic function $y(t)$ is, for $n \in \mathbb{N}_{0}$, period T, and angular frequency $\omega_{n}=2 \pi n / T$,

$$
\begin{aligned}
& a_{0}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) d t \\
& a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \cos \left(\omega_{n} t\right) d t \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} y(t) \sin \left(\omega_{n} t\right) d t .
\end{aligned}
$$

The Fourier synthesis of a periodic function $y(t)$ with analysis components a_{n} and b_{n} corresponding to ω_{n} is

$$
y(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\omega_{n} t\right)+b_{n} \sin \left(\omega_{n} t\right) .
$$

3 Let's consider the complex form of the Fourier series, which is analogous to Definition 09 four.1. It may be helpful to review Euler's formula(s) - see Appendix 04.1 com.euler.

[^0]
Definition 09 four.2: Fourier series: complex form

The Fourier analysis of a periodic function $y(t)$ is, for $n \in \mathbb{N}_{0}$, period T, and angular frequency $\omega_{n}=2 \pi n / T$,

$$
c_{ \pm n}=\frac{1}{T} \int_{-T / 2}^{T / 2} y(t) e^{-j \omega_{n} t} d t .
$$

The Fourier synthesis of a periodic function $y(t)$ with analysis components c_{n} corresponding to ω_{n} is

$$
y(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j \omega_{n} t}
$$

4 We call the integer n a harmonic and the frequency associated with it,

$$
\omega_{n}=2 \pi n / T,
$$

the harmonic frequency. There is a special name for the first harmonic ($n=1$): the fundamental frequency. It is called this because all other frequency components are integer multiples of it.
5 It is also possible to convert between the two representations above.

Definition 09 four.3: Fourier series: converting between forms

The complex Fourier analysis of a periodic function $y(t)$ is, for $n \in \mathbb{N}_{0}$ and a_{n} and b_{n} as defined above,

$$
c_{ \pm n}=\frac{1}{2}\left(a_{|n|} \mp j b_{|n|}\right)
$$

The sinusoidal Fourier analysis of a periodic function $y(t)$ is, for $n \in \mathbb{N}_{0}$ and c_{n} as defined above,

$$
\begin{aligned}
& a_{n}=c_{n}+c_{-n} \text { and } \\
& b_{n}=j\left(c_{n}-c_{-n}\right) .
\end{aligned}
$$

6 The harmonic amplitude C_{n} is

$$
\begin{align*}
C_{n} & =\sqrt{a_{n}^{2}+b_{n}^{2}} \tag{11}\\
& =2 \sqrt{c_{n} c_{-n}} . \tag{12}
\end{align*}
$$

A magnitude line spectrum is a graph of the harmonic amplitudes as a function of the harmonic frequencies. The harmonic phase is

$$
\begin{aligned}
\theta_{\mathfrak{n}} & =-\arctan _{2}\left(b_{\mathfrak{n}}, a_{\mathfrak{n}}\right) \quad \text { (see Appendix } 01.2 \text { math.trig } \\
& =\arctan _{2}\left(\operatorname{Im}\left(\mathbf{c}_{\mathfrak{n}}\right), \operatorname{Re}\left(\mathbf{c}_{\mathfrak{n}}\right)\right) .
\end{aligned}
$$

7 The illustration of Fig. series. 1 shows how sinusoidal components sum to represent a square wave. A line spectrum is also shown.

Figure series.1: a partial sum of Fourier components of a square wave shown through time and frequency. The spectral amplitude shows the amplitude of the corresponding Fourier component.

8 Let us compute the associated spectral components in the following example.

Example 09.1 four.series-1

Compute the first five harmonic amplitudes that represent the line spectrum for a square wave in the figure above.
re:
Fourier series analysis: line spectrum

[^0]: ${ }^{1}$ It's important to note that the symbol ω_{n}, in this context, is not the natural frequency, but a frequency indexed by integer n.

