
DISCRETE AND FAST FOURIER TRANSFORMS 301

09.4 four.dft Discrete and fast Fourier

transforms

Modern measurement systems primarily construct spectra by sampling an

analog electronic signal y(t) to yield the sample sequence (yn) and perform

a discrete Fourier transform.

Definition 09 four.6: discrete Fourier transform

The discrete Fourier transform (DFT) of a sample sequence (yn) of lengthN is

(Ym), wherem ∈ [0, 1, · · · , N− 1] and

Ym =

N−1∑
n=0

yne
−j2πmn/N.

The inverse discrete Fourier transform (IDFT) reconstructs the original

sequence for n ∈ [0, 1, · · · , N− 1] and

yn =
1

N

N−1∑
n=0

Yme
j2πmn/N.

The DFT (Ym) has a frequency interval equal to the sampling frequency

ωs/N and the IDFT (yn) has time interval equal to the sampling time T . The

first N/2+ 1 DFT (Ym) values correspond to frequencies

(0,ωs/N, 2ωs/N, · · ·ωs/2)

and the remaining N/2− 1 correspond to frequencies

(−ωs/2,−(N− 1)ωs/N, · · · ,−ωs/N).

In practice, the definitions of the DFT and IDFT are not the most efficent

methods of computation. A clever algorithm called the fast Fourier transform

(FFT) computes the DFT much more efficiently. Although it is a good

exercise to roll our own FFT, in this lecture we will use scipy’s built-in FFT

algorithm, loaded with the following command.

1Python code in this section was generated from a Jupyter notebook named
discrete_fourier_transform.ipynbwith a python3 kernel.

DISCRETE AND FAST FOURIER TRANSFORMS 302

from scipy import fft

Now, given a time series array y representing (yi), the DFT (using the FFT

algorithm) can be computed with the following command.

fft(y)

In the following example, we will apply this method of computing the DFT.

Example 09.4 four.dft-1 re: FFT

of a

sawtooth

signal

Wewould like to compute the DFT of a sample sequence (yn) generated by

sampling a spaced-out sawtooth. Let’s first generate the sample sequence

and plot it.

In addition to scipy, let’s import matplotlib for figures and numpy for

numerical computation.

import matplotlib.pyplot as plt
import numpy as np

We define several “control” quantities for the spaced-sawtooth signal.

f_signal = 48 # frequency of the signal
spaces = 1 # spaces between sawteeth
n_periods = 10 # number of signal periods
n_samples_sawtooth = 10 # samples/sawtooth

These quantities imply several “derived” quantities that follow.

n_samples_period = n_samples_sawtooth*(1+spaces)
n_samples = n_periods*n_samples_period

DISCRETE AND FAST FOURIER TRANSFORMS 303

T_signal = 1.0/f_signal # period of signal
t_a = np.linspace(0,n_periods*T_signal,n_samples)
dt = n_periods*T_signal/(n_samples-1) # sample time
f_sample = 1./dt # sample frequency

Wewant an interval of ramp followed by an interval of “space” (zeros). The

following method of generating the sampled signal y helps us avoid leakage,

which we’ll describe at the end of the example.

arr_zeros = np.zeros(n_samples_sawtooth) # frac of period
arr_ramp = np.arange(n_samples_sawtooth) # frac of period
y = [] # initialize time sequence
for i in range(n_periods):

y = np.append(y,arr_ramp) # ramp
for j in range(spaces):
y = np.append(y,arr_zeros) # space

We plot the result in Fig. dft.1, generated by the following code.

fig, ax = plt.subplots()
plt.plot(t_a,y,'b-',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('y_n')
plt.show()

DISCRETE AND FAST FOURIER TRANSFORMS 304

0.00 0.05 0.10 0.15 0.20

time (s)

0

2

4

6

8

y n

Figure dft.1: the sawtooth signal in the time-domain.

Now we have a nice time sequence on which we can perform our DFT. It’s

easy enough to compute the FFT.

Y = fft(y)/n_samples # FFT with proper normalization

Recall that the latter values correspond to negative frequencies. In

order to plot it, we want to rearrange our Y array such that the elements

corresponding to negative frequencies are first. It’s a bit annoying, but c’est

la vie.

Y_positive_zero = Y[range(int(n_samples/2))]
Y_negative = np.flip(

np.delete(Y_positive_zero,0),0
)
Y_total = np.append(Y_negative,Y_positive_zero)

DISCRETE AND FAST FOURIER TRANSFORMS 305

Now all we need is a corresponding frequency array.

freq_total = np.arange(
-n_samples/2+1,n_samples/2

)*f_sample/n_samples

The plot, created with the following code, is shown in Fig. dft.2.

fig, ax = plt.subplots()
plt.plot(freq_total, abs(Y_total),'r-',linewidth=2)
plt.xlabel('frequency f (Hz)')
plt.ylabel('Y_m')
plt.show()

−400 −200 0 200 400

frequency f (Hz)

0.0

0.5

1.0

1.5

2.0

Y
m

Figure dft.2: the DFT spectrum of the sawtooth function.

DISCRETE AND FAST FOURIER TRANSFORMS 306

Leakage

The DFT assumes the sequence (yn) is periodic with period N. An

implication of this is that if any periodic components have period

Nshort < N, unless N is divisible by Nshort, spurious components will

appear in (Yn). Avoiding leakage is difficult, in practice. Instead, typically

we use a window function to mitigate its effects. Effectively, windowing

functions—such as the Bartlett, Hanning, and Hamming windows—multiply

(yn) by a function that tapers to zero near the edges of the sample sequence.

Numpy has several window functions such as bartlett(), hanning(), and
hamming().
Let’s plot the windows to get a feel for them – see Fig. dft.3.

bartlett_window = np.bartlett(n_samples)
hanning_window = np.hanning(n_samples)
hamming_window = np.hamming(n_samples)

fig, ax = plt.subplots()
plt.plot(t_a,bartlett_window,

'b-',label='Bartlett',linewidth=2)
plt.plot(t_a,hanning_window,

'r-',label='Hanning',linewidth=2)
plt.plot(t_a,hamming_window,

'g-',label='Hamming',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('window w_n')
plt.legend()
plt.show()

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.window.html

DISCRETE AND FAST FOURIER TRANSFORMS 307

0.00 0.05 0.10 0.15 0.20

time (s)

0.0

0.2

0.4

0.6

0.8

1.0
w

in
d

ow
w
n

Bartlett

Hanning

Hamming

Figure dft.3: three window functions to minimize leakage.

