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09.5 four.exe Exercises for Chapter 09

four

Exercise 09.1 stanislaw

Explain, in your own words (supplementary drawings are ok), what the

frequency domain is, how we derive models in it, and why it is useful.

Exercise 09.2 pug

Consider the function

f(t) = 8 cos(t) + 6 sin(2t) +
√
5 cos(4t) + 2 sin(4t) + cos(6t− π/2).

(a) Find the (harmonic) magnitude and (harmonic) phase of its Fourier

series components. (b) Sketch its magnitude and phase spectra. Hint: no

Fourier integrals are necessary to solve this problem.

Exercise 09.3 ponyo

Consider the function with a > 0

f(t) = e−a|t|.

From the transform definition, derive the Fourier transform F(ω) of f(t).

Simplify the result such that it is clear the expression is real (no imaginary

component).

Exercise 09.4 seesaw

Consider the periodic function f : R → Rwith period T defined for one

period as

f(t) = at for t ∈ (−T/2, T/2] (1)

where a, T ∈ R. Perform a fourier series analysis on f. Letting a = 5 and

T = 1, plot f along with the partial sum of the fourier series synthesis, the

first 50 nonzero components, over t ∈ [−T, T ].
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Exercise 09.5 totoro
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Figure exe.1: one period T of the function y(t). Every line that appears straight
is so.

Consider a periodic function y(t) with some period T ∈ R and some

parameter A ∈ R for which one period is shown in Fig. exe.1.

1. Perform a trigonometric Fourier series analysis of y(t) and write the

Fourier series Y(ω).

2. Plot the harmonic amplitude spectrum of Y(ω) for A = T = 1. Consider

using computing software.

3. Plot the phase spectrum of Y(ω) for A = T = 1. Consider using

computing software.

Exercise 09.6 mall

Consider the function f : R → R defined as

f(t) =

a− a|t|/T for t ∈ [−T, T ]

0 otherwise
(2)

where a, T ∈ R. Perform a fourier transform analysis on f, resulting in F(ω).

Plot F for various a and T .
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Exercise 09.7 miyazaki

Consider the function f : R → R defined as

f(t) = ae−b|t−T | (3)

where a, b, T ∈ R. Perform a fourier transform analysis on f, resulting in

F(ω). Plot F for various a, b, and T .

Exercise 09.8 haku

Consider the function f : R → R defined as

f(t) = a cosω0t+ b sinω0t (4)

where a, b,ω0 ∈ R constants. Perform a fourier transform analysis on f,

resulting in F(ω).2

Exercise 09.9 secrets

This exercise encodes a “secret word” into a sampled waveform for

decoding via a discrete fourier transform (DFT). The nominal goal of the

exercise is to decode the secret word. Along the way, plotting and

interpreting the DFT will be important.

First, load relevant packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

We define two functions: letter_to_number to convert a letter into an
integer index of the alphabet (a becomes 1, b becomes 2, etc.) and

string_to_number_list to convert a string to a list of ints, as shown in

the example at the end.

2It may be alarming to see a Fourier transform of a periodic function! Strictly speaking, it
does not exist; however, if we extend the transform to include the distribution (not actually a
function) Dirac δ(ω), the modified-transform does exist and is given in Table ft.1.

2Python code in this section was generated from a Jupyter notebook named
random_signal_fft.ipynbwith a python3 kernel.
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def letter_to_number(letter):
return ord(letter) - 96

def string_to_number_list(string):
out = [] # list
for i in range(0,len(string)):

out.append(letter_to_number(string[i]))
return out # list

print(f"aces = { string_to_number_list('aces') }")

aces = [1, 3, 5, 19]

Now, we encode a code string code into a signal by beginning with “white

noise,” which is broadband (appears throughout the spectrum) and adding to

it sin functions with amplitudes corresponding to the letter assignments of

the code and harmonic corresponding to the position of the letter in the

string. For instance, the string 'bad'would be represented by noise plus the

signal

2 sin 2πt+ 1 sin 4πt+ 4 sin 6πt. (5)

Let’s set this up for secret word 'chupcabra'.

N = 2000
Tm = 30
T = float(Tm)/float(N)
fs = 1/T
x = np.linspace(0, Tm, N)
noise = 4*np.random.normal(0, 1, N)
code = 'chupcabra' # the secret word
code_number_array = np.array(string_to_number_list(code))
y = np.array(noise)
for i in range(0,len(code)):

y = y + code_number_array[i]*np.sin(2.*np.pi*(i+1.)*x)

For proper decoding, later, it is important to know the fundamental

frequency of the generated data.
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Figure exe.2: the chupacabra signal.

print(f"fundamental frequency = {fs} Hz")

fundamental frequency = 66.66666666666667 Hz

Now, we plot.

fig, ax = plt.subplots()
plt.plot(x,y)
plt.xlim([0,Tm/4])
plt.xlabel('time (s)')
plt.ylabel('$y_n$')
plt.show()

Finally, we can save our data to a numpy file secrets.npy to distribute our
message.
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np.save('secrets',y)

Now, I have done this (for a different secret word!) and saved the data;

download it here:

ricopic.one/mathematical_foundations/source/secrets.npy

In order to load the .npy file into Python, we can use the following

command.

secret_array = np.load('secrets.npy')

Your job is to (a) perform a DFT, (b) plot the spectrum, and (c) decode the

message! Here are a few hints.

1. Use from scipy import fft to do the DFT.
2. Use a hanningwindow to minimize the end-effects. See

numpy.hanning for instance. The fft call might then look like

2*fft(np.hanning(N)*secret_array)/N

where N = len(secret_array).
3. Use only the positive spectrum; you can lop off the negative side and

double the positive side.

Exercise 09.10 society

Derive a fourier transform property for expressions including function

f : R → R for

f(t) cos(ω0t+ψ)

where ω0, ψ ∈ R.

http://ricopic.one/mathematical_foundations/source/secrets.npy
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Exercise 09.11 flapper

Consider the function f : R → R defined as

f(t) = aus(t)e
−bt cos(ω0t+ψ) (6)

where a, b,ω0, ψ ∈ R and us(t) is the unit step function. Perform a fourier

transform analysis on f, resulting in F(ω). Plot F for various a, b, ω0, ψ and

T .

Exercise 09.12 eastegg

Consider the function f : R → R defined as

f(t) = g(t) cos(ω0t) (7)

where ω0 ∈ R and g : R → Rwill be defined in each part below. Perform a

fourier transform analysis on f for each g below for ω1 ∈ R a constant and

consider how things change if ω1 → ω0.

a. g(t) = cos(ω1t)
b. g(t) = sin(ω1t)

Exercise 09.13 savage

An instrument called a “lock-in amplifier” can measure a sinusoidal signal

A cos(ω0t+ψ) = a cos(ω0t) + b sin(ω0t) at a known frequency ω0 with

exceptional accuracy even in the presence of significant noise N(t). The

workings of these devices can be described in two operations: first, the

following operations on the signal with its noise,

f1(t) = a cos(ω0t) + b sin(ω0t) +N(t),

f2(t) = f1(t) cos(ω1t) and f3(t) = f1(t) sin(ω1t). (8)

where ω0,ω1, a, b ∈ R. Note the relation of this operation to the Fourier

transform analysis of Exercise 09.12 four.. The key is to know with some

accuracty ω0 such that the instrument can set ω1 ≈ ω0. The second
operation on the signal is an aggressive low-pass filter. The filtered f2 and f3
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are called the in-phase and quadrature components of the signal and are

typically given a complex representation

(in-phase) + j (quadrature).

Explain with fourier transform analyses on f2 and f3

a. what F2 = F(f2) looks like,

b. what F3 = F(f3) looks like,

c. why we want ω1 ≈ ω0,
d. why a low-pass filter is desirable, and

e. what the time-domain signal will look like.

Exercise 09.14 strawman

Consider again the lock-in amplifier explored in Exercise 09.13 four..

Investigate the lock-in amplifier numerically with the following steps.

a. Generate a noisy sinusoidal signal at some frequency ω0. Include

enough broadband white noise that the signal is invisible in a

time-domain plot.

b. Generate f2 and f3, as described in Exercise 09.13 four..

c. Apply a time-domain discrete low-pass filter to each f2 7→ φ2 and

f3 7→ φ3, such as scipy’s scipy.signal.sosfiltfilt, to complete the

lock-in amplifier operation. Plot the results in time and as a complex

(polar) plot.

d. Perform a discrete fourier transform on each f2 7→ F2 and f3 7→ F3. Plot

the spectra.

e. Construct a frequency domain low-pass filter F and apply it

(multiply!) to each F2 7→ F ′2 and F3 7→ F ′3. Plot the filtered spectra.

f. Perform an inverse discrete fourier transform to each F ′2 7→ f ′2 and

F ′3 7→ f ′3. Plot the results in time and as a complex (polar) plot.

g. Compare the two methods used, i.e. time-domain filtering versus

frequency-domain filtering.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt
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