11.4 lap.inv Inverse Laplace transforming

1 The inverse Laplace transform is a \qquad in the s-plane, and it can be quite challenging to calculate. Therefore, software and tables such as Table ft. 1 are typically applied, instead. In system dynamics, it is common to apply the inverse Laplace transform to a ratio (or products thereof) of polynomials in s like

$$
\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{0}}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{0}}
$$

for $a_{i}, b_{i} \in \mathbb{R}$. However, inverse transforms of general ratios such as these do not appear in the tables. Instead, low-order polynomial ratios do appear and have simple inverse Laplace transforms. Suppose we could decompose Eq. 1 into smaller additive terms. Due to the linearity property of the inverse Laplace transform, each transform could be calculated separately and consequently summed.
2 The name given to the process of decomposing Eq. 1 into smaller terms is called partial fraction expansion ${ }^{9}$. It is not particularly difficult, but it is rather tedious. Fortunately, several software tools have been developed for this expansion.

Inverse transform with a partial fraction expansion in Matlab

3 Matlab's Symbolic Math toolbox function partfrac is quite convenient.

```
help partfrac
```

4 Let's apply this to an example.

Example 11.4 lap.inv-1

What is the inverse Fourier transform image of

$$
\because \quad F(s)=\frac{s^{2}+2 s+2}{s^{2}+6 s+36} \cdot \frac{6}{s+6} \text { ? }
$$

[^0]```
syms s 'complex'
```

Now we can define $F$, a symbolic expression for $F(s)$.

```
F = (s^2 + 2*s + 2)/(s^2 + 6*s + 36)*6/(s+6);
```

Now all that remains is the apply partfrac.

```
F_pf = partfrac(F)
F_pf =
13/(3*(s + 6)) + ((5*s)/3-24)/(s^2 + 6*s + 36)
```

Now consider the Laplace transform table. The first term can easily be inverted:

$$
\begin{gathered}
\mathcal{L}^{-1}\left(\frac{13}{3} \cdot \frac{1}{s+6}\right)=\frac{13}{3} \mathcal{L}^{-1} \frac{1}{s+6} \\
\frac{13}{3} e^{-6 t}
\end{gathered}
$$

(linearity)
(table)
The second term, call it $\mathrm{F}_{2}$, is not quite as obvious, but the preimage

$$
\frac{s-a}{(s-a)^{2}+\omega^{2}}
$$

is close. Let's first make the numerator match:

$$
\frac{5}{3} s-24=\frac{5}{3}\left(s-\frac{72}{5}\right),
$$

so $a_{1}=72 / 5$. Now we need the term $\left(s-a_{1}\right)^{2}$ in the denominator. Asserting the equality

$$
\begin{aligned}
s^{2}+6 s+36 & =\left(s-a_{2}\right)^{2}+\omega^{2} \\
& =s^{2}-2 a_{2} s+a_{2}^{2}+\omega^{2} .
\end{aligned}
$$

: Equating the $s^{0}$ coefficents yields $\omega^{2}=36-a_{2}^{2}$ and equating the $s$ coefficient yields $a_{2}=-3 \neq a_{1}=72 / 5$, so no cigar! What if we "force" the rule by using a new $a_{1}^{\prime}=a_{2}$, which can be achieved by adding a term (and subtracting it elsewhere)? We need $a_{1}^{\prime}=-3$, so if we add (and subtract) a term

$$
\frac{\frac{5}{3}\left(a_{1}-a_{1}^{\prime}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}},
$$

like

$$
F_{2}=\frac{\frac{5}{3}\left(s-a_{1}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}+\frac{\frac{5}{3}\left(a_{1}-a_{1}^{\prime}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}-\frac{\frac{5}{3}\left(a_{1}-a_{1}^{\prime}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}
$$

we can combine the first two terms to yield

$$
F_{2}=\frac{\frac{5}{3}\left(s-a_{1}^{\prime}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}-\frac{\frac{5}{3}\left(a_{1}-a_{1}^{\prime}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}
$$

where we recall that $a_{1}^{\prime}=a_{2}$ by construction.
Now the expression is

$$
F_{2}=\frac{\frac{5}{3}\left(s-a_{2}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}-\frac{\frac{5}{3}\left(a_{1}-a_{2}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}
$$

The first term is, by construction, in the Laplace transform table. The second term is close to

$$
\frac{\omega}{(s-a)^{2}+\omega^{2}}
$$

for which we must make the numerator equal $\omega$. Our $\omega^{2}=36-a_{2}^{2}=27$, so $\omega= \pm \sqrt{27}$. The current numerator is

$$
\begin{aligned}
\frac{5}{3}\left(a_{1}-a_{2}\right) & =\frac{5}{3}\left(\frac{72}{5}+3\right) \\
& =29 .
\end{aligned}
$$

So we factor out $29 / \sqrt{27}$ to yield

$$
\frac{\frac{29}{\sqrt{27}} \omega}{\left(s-\mathfrak{a}_{2}\right)^{2}+\omega^{2}}
$$

: Returning to $F_{2}$, we have arrived at

$$
F_{2}=\frac{\frac{5}{3}\left(s-a_{2}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}-\frac{\frac{29}{\sqrt{27}} \omega}{\left(s-a_{2}\right)^{2}+\omega^{2}}
$$

Now the inverse transform is

$$
\begin{aligned}
\mathcal{L}^{-1} F_{2} & =\frac{5}{3} \mathcal{L}^{-1} \frac{\left(s-a_{2}\right)}{\left(s-a_{2}\right)^{2}+\omega^{2}}-\frac{29}{\sqrt{27}} \mathcal{L}^{-1} \frac{\omega}{\left(s-a_{2}\right)^{2}+\omega^{2}} \\
& =\frac{5}{3} e^{a_{2} t} \cos \omega t-\frac{29}{\sqrt{27}} e^{a_{2} t} \sin \omega t .
\end{aligned}
$$

Simple! Putting it all together, then,

$$
F(s)=\frac{13}{3} e^{-6 t}+\frac{5}{3} e^{-3 t} \cos (3 \sqrt{3} t)-\frac{29}{3 \sqrt{3}} e^{-3 t} \sin (3 \sqrt{3} t) .
$$

5 You may have noticed that even with Matlab's help with the partial fraction expansion, the inverse Laplace transform was a bit messy. This will motivate you to learn the technique in the next section.

## Just clubbing it with Matlab

6 Sometimes we can just use Matlab (or a similar piece of software) to compute the transform.
7 Matlab's Symbolic Math toolbox function for the inverse Laplace transform is ilaplace (and for the Laplace transform, laplace).
help ilaplace

8 Let's apply this to the same example.

## Example 11.4 lap.inv-2

What is the inverse Fourier transform image of

$$
F(s)=\frac{s^{2}+2 s+2}{s^{2}+6 s+36} \cdot \frac{6}{s+6} ?
$$

Use Matlab's ilaplace.
First, define a symbolic s.

```
syms s 'complex'
```

Now we can define $F$, a symbolic expression for $F(s)$.

```
F=(s^2 + 2*s + 2)/(s^2 + 6*s + 36)*6/(s+6);
```

Now all that remains is the apply ilaplace.

```
F_pf = ilaplace(F)
```

F_pf =
$(13 * \exp (-6 * t)) / 3+\left(5 * \exp (-3 * t) *\left(\cos \left(3 * 3^{\wedge}(1 / 2) * t\right)-\right.\right.$
$\left.\left.\hookrightarrow\left(29 * 3^{\wedge}(1 / 2) * \sin \left(3 * 3^{\wedge}(1 / 2) * t\right)\right) / 15\right)\right) / 3$
:This is easily seen to be equivalent to our previous result

$$
F(s)=\frac{13}{3} e^{-6 t}+\frac{5}{3} e^{-3 t} \cos (3 \sqrt{3} t)-\frac{29}{3 \sqrt{3}} e^{-3 t} \sin (3 \sqrt{3} t) .
$$


[^0]:    ${ }^{9}$ Rowell and Wormley, 1997, App. C.

