11.5 lap.sol Solving io ODEs with Laplace

1 Laplace transforms provide a convenient method for solving input-output (io) ordinary differential equations (ODEs).
2 Consider a dynamic system described by the \qquad -with t time, y the output, u the input, constant coefficients a_{i}, b_{j}, order n, and $m \leqslant n$ for $n \in \mathbb{N}_{0}$-as:

$$
\begin{array}{r}
\frac{\mathrm{d}^{\mathrm{n}} \mathrm{y}}{\mathrm{dt}}+\mathrm{a}_{\mathrm{n}-1} \frac{\mathrm{~d}^{\mathrm{n}-1} \mathrm{y}}{\mathrm{dt} \mathrm{t}^{\mathrm{n}-1}}+\cdots+\mathrm{a}_{1} \frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{a}_{0} y= \\
\mathrm{b}_{\mathrm{m}} \frac{\mathrm{~d}^{\mathrm{m}} u}{\mathrm{dt}}+\mathrm{t}^{\mathrm{m}}+\mathrm{b}_{\mathrm{m}-1} \frac{\mathrm{~d}^{\mathrm{m}-1} u}{\mathrm{dt} \mathrm{t}^{\mathrm{m}-1}}+\cdots+\mathrm{b}_{1} \frac{\mathrm{du}}{\mathrm{dt}}+\mathrm{b}_{0} u
\end{array}
$$

Re-written in summation form,

$$
\sum_{i=0}^{n} a_{i} y^{(i)}(t)=\sum_{j=0}^{m} b_{j} u^{(j)}(t)
$$

where we use Lagrange's notation for derivatives, and where, \qquad

$$
a_{n}=1
$$

3 The Laplace transform \mathcal{L} of Eq. 2 yields

$$
\begin{aligned}
\mathcal{L} \sum_{i=0}^{n} a_{i} y^{(i)}(t) & =\mathcal{L} \sum_{j=0}^{m} b_{j} u^{(j)}(t) \Rightarrow \\
\sum_{i=0}^{n} a_{i} \mathcal{L}\left(y^{(i)}(t)\right) & =\sum_{j=0}^{m} b_{j} \mathcal{L}\left(u^{(j)}(t)\right)
\end{aligned}
$$

In the next move, we recursively apply the \qquad property to yield the following

$$
\sum_{i=0}^{n} a_{i}(s^{i} Y(s)+\underbrace{\sum_{k=1}^{i} s^{i-k} y^{(k-1)}(0)}_{I_{i}(s)})=\sum_{j=0}^{m} b_{j} s^{j} U(s),
$$

where terms in $\mathrm{I}_{\mathfrak{i}}(s)$ arise from the \qquad . Splitting the left outer sum and solving for $Y(s)$,

$$
\begin{align*}
& \sum_{i=0}^{n} a_{i} s^{i} Y(s)+\sum_{i=0}^{n} a_{i} I_{i}(s)=\sum_{j=0}^{m} b_{j} s^{j} U(s) \quad \Rightarrow \tag{5a}\\
& \sum_{i=0}^{n} a_{i} s^{i} Y(s)=\sum_{j=0}^{m} b_{j} s^{j} u(s)-\sum_{i=0}^{n} a_{i} I_{i}(s) \quad \Rightarrow \tag{5b}\\
& Y(s) \sum_{i=0}^{n} a_{i} s^{i}=U(s) \sum_{j=0}^{m} b_{j} s^{j}-\sum_{i=0}^{n} a_{i} I_{i}(s) \quad \Rightarrow \tag{5c}\\
& Y(s)=\underbrace{\frac{\sum_{j=0}^{m} b_{j} s^{j}}{\sum_{i=0}^{n} a_{i} s^{i}} U(s)}_{Y_{f 0}(s)}+\underbrace{\frac{-\sum_{i=0}^{n} a_{i} I_{i}(s)}{\sum_{i=0}^{n} a_{i} s^{i}}}_{Y_{f r}(s)} . \tag{5d}
\end{align*}
$$

4 So we have derived the \qquad $Y(s)$ in terms of the forced and free responses (still in the s-domain, of course)! For a solution in the time-domain, we must inverse Laplace transform:

$$
y(t)=\underbrace{\left(\mathcal{L}^{-1} Y_{\mathrm{fo}}\right)(t)}_{y_{\mathrm{fo}}(t)}+\underbrace{\left(\mathcal{L}^{-1} Y_{\mathrm{fr}}\right)(\mathrm{t})}_{y_{\mathrm{fr}}(t)}
$$

This is an important result!

Example 11.5 lap.sol-1

Consider a system with step input $\mathfrak{u}(\mathrm{t})=7 \mathfrak{u}_{\mathrm{s}}(\mathrm{t})$, output $\mathrm{y}(\mathrm{t})$, and io ODE

$$
\ddot{y}+2 \dot{y}+y=2 u .
$$

Solve for the forced response $y_{f o}(t)$ with Laplace transforms.
5 From Eq. 6,

$$
\begin{align*}
\mathrm{yffo}_{\mathrm{fo}}(\mathrm{t}) & =\left(\mathcal{L}^{-1} \mathrm{Y}_{\mathrm{fo}}\right)(\mathrm{t}) \\
& =\mathcal{L}^{-1}\left(\frac{\sum_{j=0}^{m} b_{j} s^{j}}{\sum_{i=0}^{n} a_{i} s^{i}} \mathrm{U}(\mathrm{~s})\right) \\
& =\mathcal{L}^{-1}\left(\frac{2}{s^{2}+2 s+1} \mathrm{U}(\mathrm{~s})\right) . \tag{Eq. 7}
\end{align*}
$$

\vdots We can $u(t)$ for $u(s)$:

$$
\begin{aligned}
\mathrm{U}(\mathrm{~s}) & =(\mathcal{L u})(\mathrm{s}) \\
& =7\left(\mathcal{L} \mathfrak{U}_{\mathrm{s}}\right)(\mathrm{s}) \\
& =\frac{7}{\mathrm{~s}},
\end{aligned}
$$

where the last equality follows from a transform easily found in Table lap.1. 6 Returning to the time response \qquad ,

$$
\begin{aligned}
y_{\mathrm{fo}}(\mathrm{t}) & =\mathcal{L}^{-1}\left(\frac{2}{s^{2}+2 s+1} \mathrm{U}(\mathrm{~s})\right) \\
& =\mathcal{L}^{-1}\left(\frac{2}{s^{2}+2 s+1} \cdot \frac{7}{s}\right) .
\end{aligned}
$$

7 We can use Matlab's Symbolic Math toolbox function partfrac to perform the partial fraction expansion.

```
syms s 'complex'
Y = 2/(s^2 + 2*s + 1)*7/s;
Y_pf = partfrac(Y)
```

Y_pf =
$14 / \mathrm{s}-14 /(\mathrm{s}+1)^{\wedge} 2-14 /(\mathrm{s}+1)$

Or, a little nicer to look at,

$$
Y(s)=14\left(\frac{1}{s}-\frac{1}{(s+1)^{2}}-\frac{1}{s+1}\right)
$$

Substituting this into our solution,

$$
\begin{aligned}
\mathrm{y}_{\mathrm{fo}}(\mathrm{t}) & =14 \mathcal{L}^{-1}\left(\frac{1}{s}-\frac{1}{(s+1)^{2}}-\frac{1}{s+1}\right) \\
& =14\left(\mathcal{L}^{-1} \frac{1}{s}-\mathcal{L}^{-1} \frac{1}{(s+1)^{2}}-\mathcal{L}^{-1} \frac{1}{s+1}\right) \\
& =14\left(u_{s}(\mathrm{t})-\mathrm{t} e^{-\mathrm{t}}-e^{-\mathrm{t}}\right) \\
& =14\left(\mathrm{u}_{\mathrm{s}}(\mathrm{t})-(\mathrm{t}+1) e^{-\mathrm{t}}\right) .
\end{aligned}
$$

So the forced response starts at 0 and decays \qquad to a steady 14 .

