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12.1 tf.zp Poles and zeros

1 Two important types of objects defined from a transfer function H can be

used to characterize a system’s behavior: poles and zeros.

Definition 12 tf.1: poles

Let a system have transfer function H. Its poles are values of s for which

|H(s)| → ∞.
2 A transfer function written as a ratio has poles wherever the

denominator is zero; that is, s for which1

denH(s) = 0.

Definition 12 tf.2: zeros

Let a system have transfer function H. Its zeros are values of s for which

|H(s)| → 0.

3 A transfer function written as a ratio has zeros wherever the numerator

is zero; that is, s for which2

numH(s) = 0.

4 Given a transfer function Hwith n poles pi and ν zeros zj, we can write,

for K ∈ R,
1It is common to use this as the definition of a pole, which allows us to talk of “pole-zero

cancellation.” Occasionally we will use this terminology.
2It is common to use this as the definition of a zero, which allows us to talk of “pole-zero

cancellation.” Occasionally we will use this terminology.
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H(s) = K

ν∏
j=1

s− zj

n∏
i=1

s− pi

.

5 Poles and zeros can define a single-input, single-output (SISO) system’s

dynamic model, within a constant.

6 Recall that, even for multiple-input, multiple-output (MIMO) state-space

models, the denominator of every transfer function is the corresponding

system’s characteristic equation—the roots of which dominate the system’s

response and are equal to its eigenvalues. It is now time to observe a crucial

identity.

Corollary 12 tf.3: poles = eigenvalues = char. eq. roots

A system’s poles equal its eigenvalues equal its characteristic equation roots.

7 Therefore, everything we know about a system’s eigenvalues and

characteristic equation roots is true for a system’s poles. This includes that

they characterize a system’s response (especially its free response) and

stability.

Pole-zero plots and stability

8 The complex-valued poles and zeros dominate system behavior via their

values and value-relationships. Often, we construct a pole-zero plot—a plot

in the complex plane of a system’s poles and zeros—such as that of Fig. zp.1.

9 From our identification of poles with eigenvalues and roots of the

characteristic equation, we can recognize that each pole contributes an

exponential response that oscillates if it is complex. There are three stability

contribution possibilities for each pole pi:

• Re(pi) < 0: a stable, decaying contribution;
• Re(pi) = 0: a marginally stable, neither decaying nor growing

contribution; and

• Re(pi) > 0: an unstable, growing contribution.
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Figure zp.1: a pole-zero plot for a system with nine poles and four zeros. In this
example, six of the poles are complex-conjugate pairs and three are real. Three
are in the right half-plane, making the system unstable. One zero is in the right
half-plane, making the system “minimum phase.”

This is explored graphically in Fig. zp.2.

10 Of course, we must not forget that a system’s stability is spoiled with a

single unstable pole.

11 It can be shown that complex poles and zeros always arise as conjugate

pairs. A consequence of this is that the pole-zero plot is always symmetric

about the real axis.

Second-order systems

12 Second-order response is characterized by a damping ratio ζ and

natural frequency ωn. These parameters have clear complex-plane

“geometric” interpretations, as shown in Fig. zp.3. Pole locations are

interpreted geometrically in accordance with their relation to rays of

constant damping from the origin and circles of constant natural frequency,

centered about the origin.
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Figure zp.2: free response contributions from poles at different locations.
Complex poles contribute oscillating free responses, whereas real poles do not.
Left half-plane poles contribute stable responses that decay. Right half-plane poles
contribute unstable responses that grow. Imaginary-axis poles contribute marginal
stability.
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Figure zp.3: second-order free response contributions from poles at different
locations, characterized by the damping ratio ζ and natural frequency ωn.
Constant damping occurs along rays from the origin. Constant natural frequency
occurs along arcs of constant radius, centered at the origin.


