
EXPLORING TRANSFER FUNCTIONS IN MATLAB 373

12.2 tf.tfmat Exploring transfer

functions in Matlab

Matlab includes several nice functions for working with transfer functions.

We explore some here.

The tf command and its friends

The tf command allows us to create LTI transfer function objects (which

we’ll abbreviate as “tf objects”) that are recognized by lsim, step, and
initial.
Consider the transfer function

H(s) =
s+ 1

s3 + 3s2 + 7s+ 1
. (1)

We can make a Matlab model as follows.

sys = tf([1,1],[1,3,7,1])

sys =

s + 1
---------------------
s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.

Alternatively, we could define s as a transfer function model itself.

s = tf([1,0],[1]); % tf is 1*s+0/1 = s
(s+1)/(s^3+3*s^2+7*s+1)

ans =

s + 1
---------------------
s^3 + 3 s^2 + 7 s + 1

Continuous-time transfer function.



EXPLORING TRANSFER FUNCTIONS IN MATLAB 374

Algebraic operations with tfs

Say we have two transfer functions G(s) and H(s) (already defined as sys).
We might want to concatenate them. The idea is that we might take the

output of G(s) and use that as the input to H(s). In this case, the transfer

function from the input of G(s) to the output of H(s) is just the multiplication

G(s)H(s). (2)

G = 1/(s+2); % or tf([1],[1,2])
G*sys

ans =

s + 1
-------------------------------
s^4 + 5 s^3 + 13 s^2 + 15 s + 2

Continuous-time transfer function.

Note that we have seen that Matlab handles addition and multiplication of

scalars and tfs as well as the products of tfs. (It will also handle division.)

State-space models to tf models.

Consider the state-space model with standard matrices as shown below.

A = [-2,0;0,-3];
B = [1;1];
C = [1,0;1,1;0,1];
D = [0;0;1];

We can create a ssmodel as usual.

sys_ss = ss(A,B,C,D);



EXPLORING TRANSFER FUNCTIONS IN MATLAB 375

First, let’s form a transfer function symbolically

We know the transfer function matrix is given by

C(sI−A)−1B+D. (3)

syms S
sys_tf_s = C*inv(S*eye(size(A)) - A)*B + D

sys_tf_s =

1/(S + 2)
1/(S + 2) + 1/(S + 3)

1/(S + 3) + 1

This gave us three symbolic transfer functions in a 3× 1matrix, the first

being that for the input to the first output, the second for the input to the

second output, etc.

Or we can convert the ss model to a tf model

We can actually simply pass the ssmodel to the tf function.

sys_tf = tf(sys_ss)

sys_tf =

From input to output...
1

1: -----
s + 2

2 s + 5
2: -------------

s^2 + 5 s + 6

s + 4
3: -----

s + 3



EXPLORING TRANSFER FUNCTIONS IN MATLAB 376

Continuous-time transfer function.

Note that the function ss2tf has a serious bug and should not be trusted.

Poles, zeros, and stability

Let’s take a look at the poles and zeros of sys.

p_sys = pole(sys)
z_sys = zero(sys)

p_sys =

-1.4239 + 2.1305i
-1.4239 - 2.1305i
-0.1523 + 0.0000i

z_sys =

-1

Stability can be evaluated from p_sys. The system is stable because the real

parts of all poles are negative.

Let’s take a look at the pole-zero map.

figure;
pzmap(sys)

The resulting figure is shown in Fig. tfmat.1.

Simulating with tfs

All the simulation functions we’ve used for ssmodels

(lsim,step,impulse,initial) will also work for tfmodels. Let’s try a

impulse response on our original sys transfer function model.



EXPLORING TRANSFER FUNCTIONS IN MATLAB 377

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2

−2

2

Real Axis (seconds-1)

Im
ag
in
ar
y
A
xi
s
(s
ec
o
n
d
s-
1
)

Figure tfmat.1: the pole-zero map.

t = linspace(0,15,200);
y = impulse(sys,t);

Plot.

figure
plot(t,y);
xlabel('time (s)')
ylabel('step response')

The resulting figure is shown in Fig. tfmat.2.



EXPLORING TRANSFER FUNCTIONS IN MATLAB 378

2 4 6 8 10 12 14

0.1

0.2

0.3

time (s)

st
ep

re
sp
o
n
se

Figure tfmat.2: the impulse response.


