12.4 tf.exe Exercises for Chapter 12 ff

Exercise 12.1 scallywag

Use a computer to solve this problem. Consider the transfer function

$$
H(s)=\frac{10(s+3)}{(s+2)\left(s^{2}+8 s+41\right)} .
$$

a. What are poles and zeros of H ?
b. Comment on the stability of the system described by H (justify your comment).
c. Construct a pole-zero plot.
d. Use a function like Matlab's lisim or step to find the unit step response of the system and plot it for $t \in[0,3]$ seconds.

Exercise 12.2 swashbuckling

Consider a system with linear state-space model matrices

$$
\begin{array}{ll}
A=\left[\begin{array}{cc}
-1 & 4 \\
0 & -3
\end{array}\right] & B=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] & D=[0] .
\end{array}
$$

\qquad
25 p.

1. Derive the transfer function $H(s)$ for the system. Express it as a single ratio in s.
2. What are the poles and zeros?
3. Compare the poles to the eigenvalues of A.
4. Draw or sketch a pole-zero plot.
5. With reference to the pole-zero plot, comment on the stability and transient free response characteristics of the system.
6. Use the inverse Laplace transform \mathcal{L}^{-1} to find the system's forced response $y(t)$ to step input $u(t)=9 u_{s}(t)$.

13 imp

