13.1 imp.ip Input impedance and admittance

1 We now introduce a generalization of the familiar impedance and admittance of electrical circuit analysis, in which system behavior can be expressed algebraically instead of differentially. We begin with generalized input impedance.
2 Consider a system with a source, as shown in Fig. ip.1. The source can be either an across- or a through-variable source. The ideal source specifies either $v_{\text {in }}$ or $\mathcal{F}_{\text {in }}$, and the other variable depends on the system.
3 Let a source variables have Laplace transforms $\mathcal{V}_{\text {in }}(s)$ and $\mathcal{F}_{\text {in }}(s)$. We define the system's input impedance Z and input admittance Y to be the Laplace-domain ratios

$$
Z(s)=\frac{V_{\text {in }}(s)}{\mathcal{F}_{\text {in }}(s)} \quad \text { and } \quad Y(s)=\frac{\mathcal{F}_{\text {in }}(s)}{V_{\text {in }}(s)} .
$$

Clearly,

Both Z and Y can be considered transfer functions: for a through-variable source $\mathcal{F}_{\text {in }}$, the impedance Z is the transfer function to across-variable $\mathcal{V}_{\text {in }}$; for an across-variable source $\mathcal{V}_{\text {in }}$, the admittance Y is the transfer function to through-variable $\mathcal{F}_{\text {in }}$. Often, however, we use the more common impedance Z to characterize systems with either type of source.

Figure ip.1:

4 Note that Z and Y are system properties, not properties of the source. An impedance or admittance can characterize a system of interconnected elements, or a system of a single element, as the next section explores.

Impedance of ideal passive elements

5 The impedance and admittance of a single, ideal, one-port element is defined from the Laplace transform of its elemental equation.

Generalized capacitors A generalized capacitor has elemental equation

$$
\frac{\mathrm{d} \mathcal{V}_{\mathrm{C}}(\mathrm{t})}{\mathrm{dt}}=\frac{1}{\mathrm{C}} \mathcal{F}_{\mathrm{C}}(\mathrm{t}),
$$

the Laplace transform of which is

$$
s \mathcal{V}_{\mathrm{C}}(s)=\frac{1}{\mathrm{C}} \mathcal{F}_{\mathrm{C}}(\mathrm{~s}),
$$

which can be solved for impedance $\mathrm{Z}_{\mathrm{C}}=\mathcal{V}_{\mathrm{C}} / \mathcal{F}_{\mathrm{C}}$ and admittance $\mathrm{Y}_{\mathrm{C}}=\mathcal{F}_{\mathrm{C}} / \mathcal{V}_{\mathrm{C}}$:

Generalized inductors A generalized inductor has elemental equation

$$
\frac{\mathrm{d} \mathcal{F}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}=\frac{1}{\mathrm{~L}} \mathcal{F}_{\mathrm{L}}(\mathrm{t}),
$$

the Laplace transform of which is

$$
s \mathcal{F}_{\mathrm{L}}(\mathrm{~s})=\frac{1}{\mathrm{~L}} \mathcal{V}_{\mathrm{L}}(\mathrm{~s}),
$$

which can be solved for impedance $\mathrm{Z}_{\mathrm{L}}=\mathcal{V}_{\mathrm{L}} / \mathcal{F}_{\mathrm{L}}$ and admittance $\mathrm{Y}_{\mathrm{L}}=\mathcal{F}_{\mathrm{L}} / \mathcal{V}_{\mathrm{L}}:$

Generalized resistors A generalized resistor has elemental equation

$$
\nu_{R}(t)=\mathcal{F}_{R}(t) R,
$$

the Laplace transform of which is

$$
\mathcal{V}_{\mathrm{R}}(\mathrm{~s})=\mathcal{F}_{\mathrm{R}}(\mathrm{~s}) \mathrm{R},
$$

which can be solved for impedance $Z_{R}=\mathcal{V}_{R} / \mathcal{F}_{R}$ and admittance $Y_{R}=\mathcal{F}_{R} / \mathcal{V}_{\mathrm{R}}:$

6 For a summary of the impedance of one-port elements, see Table els.1.

Impedance of interconnected elements

7 As with electrical circuits, impedances of linear graphs of interconnected elements can be combined in two primary ways: in parallel or in series.
8 Elements sharing the same through-variable are said to be in series connection. N elements connected in series o $\frac{1}{Z_{1}} 0 \frac{1}{Z_{2}} \circ \cdots$ have equivalent impedance Z and admittance Y :

$$
Z(s)=\sum_{i=1}^{N} Z_{i}(s) \quad \text { and } \quad Y(s)=1 / \sum_{i=1}^{N} 1 / Y_{i}(s)
$$

9 Conversely, elements sharing the same across-variable are said to be in parallel connection. N elements connected in parallel $0 \underset{\sim}{0}$ have equivalent impedance Z and admittance Y :

$$
Z(s)=1 / \sum_{i=1}^{N} 1 / Z_{i}(s) \quad \text { and } \quad Y(s)=\sum_{i=1}^{N} Y_{i}(s) .
$$

Example 13.1 imp.ip-1

re:
input
impedance
of a simple circuit

