# 13.6 imp.divide The divider method 



Figure divide.1: the two-element across-variable divider.

1 In Electronics, we developed the useful voltage divider formula for quickly analyzing how voltage divides among series electronic impedances. This can be considered a special case of a more general across-variable divider equation for any elements described by an impedance. After developing the across-variable divider, we also introduce the through-variable divider, which divides an input through-variable among parallel elements.

## Across-variable dividers

2 First, we develop the solution for the two-element across-variable divider shown in Figure divide.1. We choose the across-variable across $Z_{2}$ as the output. The analysis follows the impedance method of Lecture $13.3 \mathrm{imp} . \mathrm{tf}$, solving for $\mathcal{V}_{2}$.

1. Derive four independent equations.
a) The normal tree is chosen to consist of $\mathcal{V}_{\text {in }}$ and $Z_{2}$.
b) The elemental equations are
$\square$
c) The continuity equation is
d) The compatibility equation is
2. Solve for the output $\mathcal{V}_{2}$. From the elemental equation for $Z_{2}$,
$\square$
3 A similar analysis can be conducted for n impedance elements.

## Equation 1 general across-variable divider

## Through-variable dividers

4 By a similar process, we can analyze a network that divides a through-variable into $n$ parallel impedance elements.

## Equation 2 general through-variable divider

## Transfer functions using dividers

5 An excellent shortcut to deriving a transfer function is to use the acrossand through-variable divider rules instead of solving the system of algebraic equations, as in Lec. $13.3 \mathrm{imp} . \mathrm{tf}$. An algorithm for this process is as follows.

1. Identify the element associated with an output variable $Y_{i}$. Call it the output element.
2. Identify the source associated with an input variable $\mathrm{U}_{\mathrm{j}}$. Set all other sources to zero.
3. Transform the network to be an across- or through-variable divider that includes the "bare" (uncombined) output element's output variable. ${ }^{6}$
a) If necessary, form equivalent impedances of portions of the network, being sure to leave the output element's output variable alone.
b) If necessary, transform the source à la Norton or Thévenin.
4. Apply the across- or through-variable divider equation.
5. If necessary, use the elemental equation of the output element to trade output across- and through-variables.
6. If necessary, use the source transformation equation of the input to trade input across- and through-variables.
7. Divide both sides by the input variable.

6 It turns out that, despite its many "if necessary" clauses, very often this "shortcut" is easier than the method of Lecture 13.3 imp.tf for low-order systems if only a few transfer functions are of interest.

$\because \quad c$. Transforming the source, find $\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{V}_{s}}$.

[^0]
[^0]:    ${ }^{6}$ In other words, if the across-variable of the output element is the output, do not combine it in series; if the through-variable is the output, do not combine it in parallel.

