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Exercise 13.1 tile

Use the linear graph below of a thermal system to (a) derive the transfer

function TR2(s)/Ts(s), where Ts is the input temperature and TR2 is the

temperature across the thermal resistor R2. Use impedance methods. And (b)

derive the input impedance the input Ts drives.
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Exercise 13.2 granite

Use the linear graph below of a fluid system to (a) derive the transfer

function PC(s)/PS(s), where PS is the input pressure and PC is the pressure

across the fluid capacitance C. Use impedance methods and a divider rule is

highly recommended. (Simplify the transfer function.) And (b) derive the

input impedance the input PS drives. (Don’t simplify the expression.)
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Exercise 13.3 granted

Use the linear graph below of an electronic system to derive the transfer

function IR1(s)/VS(s), where VS is the input voltage and IR1 is the current

through the resistor R1. (Simplify the transfer function.) Use an impedance

method. Hint: a divider method is recommended; without it, use of a computer is

recommended.
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Exercise 13.4 concrete

Use the linear graph of a fluid system in Fig. exe.1 to derive the transfer

function QC(s)/PS(s), where PS is the input pressure and QC is the flowrate

through the fluid capacitance C. Use impedance methods; a divider rule is

recommended but not required. Identify all impedances but do not

substitute them into the transfer function.
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Figure exe.1: a fluid system linear graph.

Exercise 13.5 tableau

Consider an accelerometer that has transfer function

G(s) ≡ Vi(s)

A(s)
=

KGω
2
nG

s2 + 2ζGωnG s+ω
2
nG

, (1)

where

• A is the input acceleration in m/s2,

• Vi is the output voltage in V,

• KG = 0.1 V/(m/s2) is the gain,

• ωnG = 3000 rad/s is the natural frequency, and
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• ζG = 0.2 is the damping ratio.

Perform a frequency domain analysis as follows.

a. Generate a Bode plot of G(s).

b. At DC (ω = 0 rad/s), compute the magnitude and phase of the

frequency response function of the accelerometer.

Suppose there is a sinusoidal systematic noise signal at the input, with

amplitude anoise = 1m/s2 and frequency ωnoise = 2900 rad/s.7

c. Assuming there is only noise input, at the noise frequency ωnoise,

compute the amplitude and phase of the voltage Vi at the output of the

accelerometer. Why is the amplitude higher than it would have been

at DC (use your Bode plot from Item a. to justify your answer).

To mitigate the systematic noise, we add a filter with transfer function H(s)

to the output of the accelerometer, as shown in Fig. exe.2.

acceleration
a(t), A(s)

G(s)
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H(s)
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output voltage
vo(t), Vo(s)

voltage

vi(t), Vi(s)

Figure exe.2: Accelerometer and filter block diagram.

By definition,

H(s) ≡ Vo(s)

Vi(s)
. (2)

Assume the filter and accelerometer do not dynamically load each other. The

filter circuit diagram is shown in Fig. exe.3.

7Assume the input phase is zero.
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Figure exe.3: Filter circuit.

d. Draw a linear graph model of the filter circuit.

e. Use impedance methods to derive the transfer function H(s) in terms of

the circuit element parameters R, L, and C.

f. Find the filter’s natural frequency ωnH and damping ratio ζH.8

g. Let C = 0.001 F. Design the filter by choosing R and L such that

ζH = 1 and ωnH = 1000 rad/s. (3)

h. Find the transfer function

Vo(s)

A(s)
(4)

with all parameters substituted. Simplify.

i. Generate a Bode plot for Vo(s)/A(s).

j. Using the Bode plot of Item i., explain why we should expect the

output from the systematic noise at ωnoise to be improved.

k. From the transfer function Vo(s)/A(s), at the noise frequency ωnoise,

compute the amplitude and phase of the output voltage Vo.

l. Compare the result from Item k. to the unfiltered voltage in Item c. by

finding the ratio of the filtered amplitude over then unfiltered

amplitude.

m. How could you augment the filter design to further reduce the

systematic noise?

8Be cautious tomake the denominator have the proper standard form s2+2ζHωnH
s+ω2nH

.
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Exercise 13.6 gypsum

Respond to the following questions and imperatives with a sentence or two,

equation, and/or a sketch.

a. Comment on the stability and transient response characteristics of a

system with eigenvalues

−2,−5,−8+ j3,−8− j3.

b. Consider an LTI system that, given input u1, outputs y1, and given

input u2, outputs y2. If the input is u3 = 5u1 − 6u2, what is the output

y3?

c. Consider a second-order system with natural frequency ωn = 2 rad/s

and damping ratio ζ = 0.5. What is the free response for initial

condition y(0) = 1?

d. Two thermal elements with impedances Z1 and Z2 have a temperature

source TS applied across them in series. What is the transfer function

from TS to the heat Q2 through Z2?

e. Draw a linear graph of a pump (pressure source) flowing water

through a long pipe into the bottom of a tank, which has a valve at its

bottom from which the water flows.



Part VI

Nonlinear system analysis
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Nonlinear systems and linearization

1 Thus far, we’ve mostly considered linear system models. Many of the

analytic tools we’ve developed—ODE solution techniques, superposition,

eigendecomposition, stability analysis, impedance modeling, transfer

functions, frequency response functions—do not apply to nonlinear

systems. In fact, analytic solutions are unknown for most nonlinear system

ODEs. And even basic questions are relatively hard to answer; for instance:

is the system stable?

2 In this and the following chapters, we consider a few analytic and

numerical techniques for dealing with nonlinear systems.

3 A state-space model has the general form

dx
dt = f(x,u, t) (1a)

y = (1b)

where f and g are vector-valued functions that depend on the system.

Nonlinear state-space models are those for which f is a

functional of either x or u. For instance, a state variable x1 might appear as

x21 or two state variables might combine as x1x2 or an input u1 might enter

the equations as logu1.

Autonomous and nonautonomous systems

4 An autonomous system is one for which f(x), with neither time nor

input appearing explicitly. A nonautonomous system is one for which

either t or u do appear explicitly in f. It turns out that we can always write
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nonautonomous systems as autonomous by substituting in u(t) and

introducing an extra for t1.

5 Therefore, without loss of generality, we will focus on ways of analyzing

autonomous systems.

Equilibrium

6 An equilibrium state (also called a ) x is one

for which dx/dt = 0. In most cases, this occurs only when the input u is a

constant u and, for time-varying systems, at a given time t. For autonomous

systems, equilibrium occurs when the following holds:

(2)

This is a system of nonlinear algebraic equations, which can be challenging

to solve for x. However, frequently, several solutions—that is, equilibrium

states—do exist.

1 � Strogatz and Dichter, 2016.


