14.1 nlindlin Linearization

1 A common method for dealing with a nonlinear system is to linearize it: transform it such that its state equation is linear. A linearized model is typically only valid in some neighborhood of state-space. This neighborhood is selected by choosing an operating point x_{0} used in the linearization process. We use two considerations when choosing an operating point:

1. that implied by the name-it should be in a region of state-space in which the state will stay throughout the system's operation-and
2. the validity of the model near the operating point.

Due to the fact that nonlinear systems tend to be more-linear near equilibria, the second consideration frequently suggests we choose one as an operating point: $x_{o}=\bar{x}$.

Taylor series expansion

2 A Taylor series expansion of Eq. 1a about an operating point x_{o}, \mathbf{u}_{0} (for a nonautonomous system) yields polynomial terms that are linear, quadratic, etc. in x and u. If we keep only the linear terms and define new state and input variables

$$
x^{*}=x-x_{0} \quad \text { and } \quad \mathbf{u}^{*}=\mathbf{u}-\mathbf{u}_{o}
$$

we get a linear state equation

$$
\frac{d x^{*}}{d t}=A x^{*}+B u^{*}
$$

where the matrix components are given by

$$
A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x_{o}, \mathbf{u}_{o}} \quad \text { and } \quad B_{i j}=\left.\frac{\partial f_{i}}{\partial u_{j}}\right|_{\chi_{o}, \mathbf{u}_{o}}
$$

These first-derivative matrices are generally called Jacobian matrices.
3 This result also applies to autonomous equations if we drop the $B u^{*}$ term.

Example 14.1 nlin.lin-1

Consider a vehicle suspension system that is overloaded such that its springs are exhibiting hardening behavior such that a lumped-parameter constitutive
re:
hardening
spring equation for the springs (collectively) is

$$
f_{k}=k x_{k}+a x_{k}^{3}
$$

where f_{k} is the force, x_{k} the displacement, and $k, a>0$ constant parameters of the spring.
a. Develop a (nonlinear) spring-mass-damper linear graph model for the vehicle suspension with input position source X_{s}.
b. Derive a nonlinear state-space model from the linear graph model using the state vector

$$
x=\left[\begin{array}{ll}
x_{m} & v_{\mathrm{m}}
\end{array}\right]^{\top} .
$$

c. Linearize the system about the operating point

$$
x_{0}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\top} \quad \text { and } \quad u_{o}=[0]
$$

by computing the A, B, and E matrices of the linearized system. ${ }^{a}$

[^0]
[^0]: ${ }^{a}$ The E matrix is the Jacobian with respect to the time-derivative of the input: $\dot{\mathbf{u}}$, which arises occasionally.

