14.2 nlin.char Nonlinear system characteristics

1 Characterizing no	onlinear systems can be challenging	without the tools
developed for	system characterization. H	Iowever, there are
ways of characterizi	ng nonlinear systems, and we'll here	e explore a few.
Those in-common v	with linear systems	
2 As with linear sy	stems, the system order is either the	e number of
state-variables requi	red to describe the system or, equiv	alently, the
highest-order	in a single scalar differe	ential equation
describing the syster	n.	
3 Similarly, nonline	ear systems can have state variables	that depend on
alone o	or those that also depend on	(or some
other independent v	ariable). The former lead to ordinar	y differential
equations (ODEs) an	d the latter to partial differential eq	uations (PDEs).
4 Equilibrium was	already considered in Chapter 14 n	lin.
Stability		
5 In terms of syster important as	m performance, perhaps no other cr	iterion is as
Definition 14 nlin.1:	Stability	
	m an equilibrium state \bar{x} , the respor	nse $x(t)$ can:
1. asymptotically	y return to $\overline{\mathbf{x}}$ (asymptotically),
2. diverge from	\overline{x} (), or	
•	rned or oscillate about \bar{x} with a stable).	constant amplitude

Notice that this definition is actually local: stability in the neighborhood of one equilibrium may not be the same as in the neighborhood of another.

Figure char.1: plots of x' versus x for Eq. 1.

6 Other than nonlinear systems' lack of linear systems' eigenvalues, poles, and roots of the characteristic equation from which to compute it, the primary difference between the stability of linear and nonlinear systems is that nonlinear system stability is often difficult to establish ______. Using a linear system's eigenvalues, it is straightforward to establish stable, unstable, and marginally stable subspaces of state-space (via transforming to an eigenvector basis). For nonlinear systems, no such method exists. However, we are not without tools to explore nonlinear system stability. One mathematical tool to consider is _______, which is beyond the scope of this course, but has good treatments in² and³.

Qualities of equilibria

7 Equilibria (i.e. stationary points) come in a variety of qualities. It is instructive to consider the first-order differential equation in state variable _____ with real constant _____ :

$$x' = rx - x^3. (1)$$

If we plot x' versus x for different values of r, we obtain the plots of Fig. char.1.

8 By definition, equilibria occur when x' = 0, so the x-axis crossings of Fig. char.1 are equilibria. The blue arrows on the x-axis show the ______ of state change x', quantified by the plots. For both

² Brogan, 1991, Ch. 10.

³ Choukchou-Braham **andothers**, 2013, App. A.

(a) and	(b), only one equilibrium exis	sts: $x = 0$. Note that the blue arrows in		
both ple	ots point <i>toward</i> the equilibriu	ım. In such cases—that is, when a		
	exists around a	an equilibrium for which state changes		
point to	oward the equilibrium—the e	quilibrium is called an		
	or I	Note that attractors are		
9 Nov	v consider (c) of Fig. char.1. V	When $r > 0$, three equilibria emerge.		
This ch	ange of the number of equilib	oria with the changing of a parameter is	S	
called a	A plot	of bifurcations versus the parameter is	;	
called a	bifurcation diagram . The x	= 0 equilibrium now has arrows that		
		equilibrium is called a		
or	and is	. The other two equilibria here		
are (stable) attractors. Consider a very small initial condition $x(0) = \varepsilon$. If				
ϵ > 0, th	ne repeller pushes away x and	d the positive attractor pulls x to itself.		
Conver	sely, if $\epsilon <$ 0, the repeller agai	in pushes away x and the negative		
attracto	or pulls x to itself.			
10 An	other type of equilibrium is c	called the: one which		
acts as a	an attractor along some lines	and as a repeller along others. We will		
see this	type in the following exampl	le.		

Example 14.2 nlin.char-1

Consider the dynamical equation

$$x' = x^2 + r \tag{2}$$

with r a real constant. Sketch x' vs x for negative, zero, and positive r. Identify and classify each of the equilibria.

re: Saddle bifurcation