14.3 nlin.exe Exercises for Chapter 14 nlin

Exercise 14.1 sigmund

Consider a nonlinear capacitor with constitutive equation relating charge q_C and voltage v_C :

$$q_C = k v_C^{3/2} \tag{1}$$

with k a positive constant.

- a. Derive an elemental equation relating $\mathrm{d}\nu_C/\,\mathrm{d} t$ and \mathfrak{i}_C for the nonlinear capacitor.
- b. From the elemental equation, what is the voltage-dependent capacitance $C(v_C)$?
- c. Consider the RLC-circuit of Fig. exe.1, which includes the nonlinear capacitor. Derive a nonlinear state-space equation with state vector

$$\mathbf{x} = \begin{bmatrix} \mathbf{v}_{\mathbf{C}} & \mathbf{i}_{\mathbf{L}} \end{bmatrix}^{\top}. \tag{2}$$

- d. For a constant input $V_S(t) = 5 V$, derive the equilibrium state.
- e. Linearize the state-space equation about the operating point

$$\mathbf{x}_{o}, \mathbf{u}_{o} = \begin{bmatrix} 5 \, \mathbf{V} & 0 \, \mathbf{A} \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 5 \, \mathbf{V} \end{bmatrix}.$$
 (3)

Define the state equation matrices A and B, the linearized state and input vectors \mathbf{x}^* and \mathbf{u}^* , and the linearized state equation.

Figure exe.1: circuit for Exercise 14.1 nlin..

Exercise 14.2 franz

A nonlinear diode model gives a diode's elemental equation to be

$$i_D = I_s(\exp(v_D/V_{TH}) - 1).$$

We let the saturation current be $I_s=10^{-12}$ A and the thermal voltage be $V_{TH}=0.025$ V. Considering this nonlinear diode model for the circuit of Fig. exe.2.

Figure exe.2: circuit for Exercise 14.2 nlin..

a. Derive a nonlinear state-space equation with state vector

$$\mathbf{x} = \begin{bmatrix} \mathbf{v}_{\mathbf{C}} & \mathbf{i}_{\mathbf{L}} \end{bmatrix}^{\top}. \tag{4}$$

Hint: include the diode in your normal tree.

- b. For a constant input $V_S(t) = 0 \text{ V}$, derive the equilibrium state.
- c. Linearize the state-space equation about the operating point

$$\mathbf{x}_{o}, \mathbf{u}_{o} = \begin{bmatrix} 0 \, \mathbf{V} & 0 \, \mathbf{A} \end{bmatrix}^{\mathsf{T}}, \begin{bmatrix} 0 \, \mathbf{V} \end{bmatrix}.$$
 (5)

Hint: $d \ln(x) / dx = 1/x$. Define the state equation matrices A and B, the linearized state and input vectors \mathbf{x}^* and \mathbf{u}^* , and the linearized state equation.

15 phase

16 sim