
NONLINEAR SYSTEMS IN PYTHON 428

16.1 sim.python Nonlinear Systems in

Python

Most of the Python Control Systems package tools we’ve used will not work

for nonlinear systems. For instance, nonlinear systems cannot be defined

with control.tf(), control.ss(), and control.zpk(). Similarly, the

simulation functions control.forced_response(),
control.initial_response(), and control.step_response() do not
work for nonlinear systems.

There are two common ways of defining and simulating nonlinear systems

in Python. The first uses the SciPy package’s integratemodule’s functions

such as solve_ivp. The second uses the Control Systems package, which

has nonlinear state-space model reprsentations. For simulating nonlinear

systems, the Control Systems package actually calls the SciPy package’s

integratemodule’s functions. Because we have already been using the

Control Systems package for linear system models, we will us its nonlinear

facilities, as well. However, it should be mentioned that the package’s

documentation for nonlinear systems is a bit sparse.

Defining a Nonlinear System

We can define a nonlinear system in the Control Systems package by calling

the control.nlsys() function. Here are its most important arguments, for

us:

• updfcn (callable): The state update function that encodes the

right-hand side of the state equation (i.e., f(x,u, t)). It should have the

form updfcn(t, x, u, params) -> array, where t is the current
value of time, x is a 1D NumPy array representing the states, u is a 1D
array representing the inputs, and params is a dict of parameter

values. The function should return an array of state derivatives (i.e.,

x ′).

• outfcn (callable, optional): The output function that encodes the

right-hand side of the output equation (i.e., g(x,u, t)). It should have

NONLINEAR SYSTEMS IN PYTHON 429

the form outfcn(t, x, u, params) -> array, where t, x, u, and
params are as they were for updfcn. If this argument is not provided,

the output is taken to be the states (i.e., y = x).

• inputs (int, list of str or None, optional): System inputs description.

The number of inputs is given by an int. A name for each can be

given as a list of strs. If it is not provided or if None is passed, the

function will attempt to discern the inputs.

• outputs (int, list of str or None, optional): System outputs

description, with the same options as inputs.
• states (int, list of str or None, optional): System states description,

with the same options as inputs.
• params (dict, optional): Numerical values of parameters for

evaluation in functions.

Consider the Van der Pol oscillator nonlinear state-space model

ẋ = f(x)

=

[
x2

(1− x21)x2 − x1

]
. (1)

Note that this is an autonomous system (i.e., there are no inputs). This state

equation has applications in electrical and biological modeling. We can

encode its dynamics in the following Python update function:

def van_der_pol_update(t, x, u, params):
"""Returns the rhs of the Van der Pol state equation"""
dxdt = np.array([x[1], (1 - x[0]**2) * x[1] - x[0]])
return dxdt

Now we can create a nonlinear system model with control.nlsys() as
follows:

sys = control.nlsys(van_der_pol_update, inputs=0, states=2, outputs=2)

This creates a NonlinearIOSystem object.

NONLINEAR SYSTEMS IN PYTHON 430

Simulating a Nonlinear System A nonlinear system in the form of a

NonlinearIOSystem object can be simulated (i.e., numerically solved) with

the control.input_output_response() function. This function is very

similar to control.forced_response(), so we will immediately apply it to

our Van der Pol oscillator model as follows:

T = np.linspace(0, 25, 301) # Simulation time array
y = control.input_output_response(

sys, T=T, X0=[3, 0], squeeze=True
).outputs

This returns a TimeResponseData object, just as does
control.forced_response(), so we have selected the outputs data
attribute.

Plotting the Step Response We can plot the response through time as

follows:

fig, ax = plt.subplots()
ax.plot(T, y[0,:], label="$x_1(t)$")
ax.plot(T, y[1,:], label="$x_2(t)$")
ax.set_xlabel("Time (s)")
ax.set_ylabel("State Response")
ax.legend(loc='upper right')
plt.show()

NONLINEAR SYSTEMS IN PYTHON 431

0 5 10 15 20 25

Time (s)

−2

−1

0

1

2

3

St
at
e
R
es
p
o
n
se

x1(t)

x2(t)

Figure python.1: A state free response through time.

fig, ax = plt.subplots()
ax.plot(y[0,:], y[1,:])
ax.set_xlabel("$x_1(t)$")
ax.set_ylabel("$x_2(t)$")
plt.show()

−2 −1 0 1 2 3

x1(t)

−2

−1

0

1

2

x
2
(t

)

Figure python.2: A phase plot of the free response.

