
NONLINEAR SYSTEMS IN MATLAB 432

16.2 sim.matlab Nonlinear systems in

Matlab

Many of the Matlab tools we’ve used will not work for nonlinear systems;

for instance, system-definition with tf, ss, and zpk and simulation with

lsim, step, initial—none will work with nonlinear systems.

Defining a nonlinear system

We can define a nonlinear system in Matlab by defining its state-space

model in a function file. Consider the nonlinear state-space model1

ẋ = f(x)

=

[
x2

(1− x21)x2 − x1

]
. (1)

A function file describing it is as follows.

type van_der_pol.m

function dxdt = van_der_pol(t,x)
dxdt = [...

x(2); ...
(1-x(1)^2)*x(2) - x(1) ...

];

Note that x is representing the (two) state vector x, which, along with time t
(t), are passed as arguments to van_der_pol. The variable dxdt serves as the
output (return) of the function. Effectively, van_der_pol is simply f(x), the

right-hand side of the state equation.

Simulating a nonlinear system

The nonlinear state equation is a system of ODEs. Matlab has several

numerical ODE solvers that perform well for nonlinear systems. When

1This is a van der Pol equation.

NONLINEAR SYSTEMS IN MATLAB 433

choosing a solver, the foremost considerations are ODE stiffness and

required accuracy. Stiffness occurs when solutions evolve on drastically

different time-scales. For a more-thorough guide for selecting an ODE

solver, see

mathworks.com/help/matlab/math/choose-an-ode-solver.html

For most ODEs, the ode45 Runge-Kutta solver is the best choice, so try it
first. Its syntax is paradigmatic of all Matlab solvers.

[t,y] = ode45(...
odefun, ... % ODE function handle, e.g. van_der_pol
time, ... % time array or span
x0 ... % initial state

)

Details here include

1. the ODE function given must have exactly two arguments: t and x;
2. the time array or span doesn’t impact solver steps; and

3. the initial conditions must be specified in a vector size matching the

state vector x.

Let’s apply this to our example from above. We begin by specifying the

simulation parameters.

x0 = [3;0];
t_a = linspace(0,25,300);

And now we simulate.

[~,x] = ode45(@van_der_pol,t_a,x0);

Note that since we specified a full time array t_a, and not simply a range,

the time (first) output is superfluous. We can avoid assigning it a variable

by inserting ~ appropriately.

http://mathworks.com/help/matlab/math/choose-an-ode-solver.html

NONLINEAR SYSTEMS IN MATLAB 434

0 2 4 6 8 10 12 14 16 18 20 22 24

−2

0

2

time (s)

fr
ee

re
sp
o
n
se

x1
x2

Figure matlab.1: free response plotted through time.

Plotting the response

In time, the response is shown in Fig. matlab.1. Note the weirdness—this is

certainly no decaying exponential!

figure
plot(...

t_a,x.', ...
'linewidth',1.5 ...

)
xlabel('time (s)')
ylabel('free response')
legend('x_1','x_2')

It seems the response is settling into a non-sinusoidal periodic function.

This is especially obvious if we consider the phase portrait of Fig. matlab.2.

figure
plot(...

x(:,1),x(:,2), ...
'linewidth',2 ...

)
xlabel('x_1')
ylabel('x_2')

NONLINEAR SYSTEMS IN MATLAB 435

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−2

0

2

x1

x 2

Figure matlab.2: free response plotted in phase space.

