01.3 math.matrix Matrix inverses

This is a guide to inverting $1 \times 1,2 \times 2$, and $n \times n$ matrices.
Let A be the 1×1 matrix

$$
A=[a] .
$$

The inverse is simply the reciprocal:

$$
A^{-1}=[1 / a] .
$$

Let B be the 2×2 matrix

$$
B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

It can be shown that the inverse follows a simple pattern:

$$
\begin{aligned}
B^{-1} & =\frac{1}{\operatorname{det} B}\left[\begin{array}{cc}
b_{22} & -b_{12} \\
-b_{21} & b_{11}
\end{array}\right] \\
& =\frac{1}{b_{11} b_{22}-b_{12} b_{21}}\left[\begin{array}{cc}
b_{22} & -b_{12} \\
-b_{21} & b_{11}
\end{array}\right] .
\end{aligned}
$$

Let C be an $n \times n$ matrix. It can be shown that its inverse is

$$
C^{-1}=\frac{1}{\operatorname{det} C} \operatorname{adj} C
$$

where adj is the adjoint of C .

