2.5 Problems

Problem 2.1 WALD Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is $i_L(0)=0$.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the differential equation for $i_L(t)$ arranged in the standard form and identify the time constant τ .
- (c) Solve the differential equation for $i_L(t)$ and use the solution to find the output voltage $v_o(t)$.

Problem 2.2 @[THEOCRATICALLY](https://electronics.ricopic.one/theocratically) Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial capacitor voltage is $v_C(0) = v_{C0}$, a known constant.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the differential equation for $v_C(t)$ arranged in the standard form.
- (c) Solve the differential equation for $v_C(t)$.

Problem 2.3 MELIPPOPHOBIA For the RC circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $v_C(t)|_{t=0} = v_{C0}$, where $v_{C0} \in \mathbb{R}$ is a given initial capacitor voltage. Hint: you will need to solve a differential equation for $v_C(t)$.

Problem 2.4 EXPLUITARIANISM For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $i_L(t)|_{t=0} = 0$ be the initial inductor current. Hint: you will need to solve a differential equation for $i_L(t)$.

Problem 2.5 @[GASTROLOBIUM](https://electronics.ricopic.one/gastrolobium) For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = 0$. Let $v_c(t)|_{t=0} = 5$ V and $dv_c/dt|_{t=0} = 0$ V/s be the initial conditions. Assume the characteristic equation has distinct roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_{C} .

Problem 2.6 @[THYROPRIVIC](https://electronics.ricopic.one/thyroprivic) For the circuit diagram below, perform a complete circuit analysis to solve for $v_{\rho}(t)$ if $V_s(t) = 3 \sin(10t)$. Let $v_C(t)|_{t=0} = 0$ V and $dv_C/dt|_{t=0} = 0 \text{ V/s}$ be the initial conditions. Assume the characteristic equation has distinct, complex roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in $v_{\rm C}$. Also, consider which, if any, of your results from [problem 2.5](#page-1-0) apply and re-use them, if so.

Problem 2.7 LEMOGENESIS For the circuit diagram below, solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where $A = 2$ V is the given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $R = 50 \Omega$, $L = 50 \text{ mH}$, and $C = 200 \text{ nF}$. Let the circuit have initial conditions $v_C(0) = 1$ V and $i_L(0) = 0$ A. Find the steady-state ratio of the output amplitude to the input amplitude A for ω = {5000, 10000, 50000} rad/s. This circuit is called a **low-pass filter—explain why this makes sense. Plot** $v_o(t)$ **in MATLAB, Python, or** Mathematica for ω = 400 rad/s (you think this won't be part of the quiz, but it will be!). Hint: either re-write your system of differential-algebraic equations and initial conditions as a single second-order differential equation with initial conditions in the differential variable *or* re-write it as a system of two first-order differential equations and solve that.

Problem 2.8 O[PHOTOCHROMASCOPE](https://electronics.ricopic.one/photochromascope) Use the circuit diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 > 0$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is $i_L(0)$ = 0 and the initial capacitor voltage is $v_C(0)$ = 0. Assume the damping ratio $\zeta \in (0, 1)$; i.e. the system is underdamped and the roots of the characteristic equation are complex.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the second-order differential equation for $i_{\rm L}(t)$ arranged in the standard form and identify the natural frequency ω_n and damping ratio ζ .
- (c) Convert the initial condition in v_C to a *second* initial condition in i_L .
- (d) Solve the differential equation for $i_l(t)$ and use the solution to find the output voltage $v_{o}(t)$. It is acceptable to use a known solution and to express your solution in terms of ω_n and ζ .

Problem 2.9 O[STADIUM](https://electronics.ricopic.one/stadium) Use the circuit diagram below to answer the following questions and imperatives. Let $V_s = A_0$, where $A_0 > 0$ is a known constant. The initial capacitor voltage is $v_C(0) = 0$ and the initial inductor current is $i_L(0) = 0$.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Derive the second-order differential equation in $v_C(t)$.
- (c) Write the differential equation in standard form and identify the natural frequency ω_n and damping ratio ζ .
- (d) Convert the initial condition in i_L to a *second* initial condition in v_C .
- (e) *Do not solve the differential equation*, but outline the steps you would take to solve it.

Problem 2.10 [MIROT](https://electronics.ricopic.one/mirot) Use the circuit diagram below to answer the following questions and imperatives. Let $V_s = A_0$, where $A_0 > 0$ is a known constant. The initial capacitor voltage is $v_C(0) = 5$ V and the initial inductor current is $i_L(0) = 0$.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Derive the second-order differential equation in $v_C(t)$.
- (c) Write the differential equation in standard form and identify the natural frequency ω_n and damping ratio ζ .
- (d) Convert the initial condition in i_L to a *second* initial condition in v_C (i.e., $\frac{1}{C}(0)$).
- 𝑣 𝐶 (e) *Do not solve the differential equation*, but outline the steps you would take to solve it.

Problem 2.11 WIMBRELLA Use the circuit diagram below to answer the following questions and imperatives. Let $I_S = A_0$, where $A_0 > 0$ is a known constant. The initial capacitor voltage is $v_C(0) = 0$ V and the initial inductor current is $i_L(0) = 5$ A.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Derive the first-order differential equation in $i_L(t)$.
- (c) Write the differential equation in standard form with a time constant τ .
- (d) Solve the differential equation (find the specific solution) for $i_o(t) = i_L(t)$.

3 Steady-State Circuit Analysis for Sinusoidal Inputs \mathscr{P}

Steady-state circuit analysis for sinusoidal inputs does not require the, at times, lengthy process of solving differential equations. Impedance methods, presented in this chapter, are shortcuts to steady-state analysis. It is important to note that impedance methods do not give information about the transient response.

3.1 Complex or Phasor Representations of Voltage and Current ⁹

It is common to represent voltage and current in circuits as complex exponentials, especially when they are sinusoidal. **Euler's formula**

is our bridge back-and forth from trigonomentric form (cos θ and sin θ) and exponential form $(e^{j\theta})$:

$$
e^{j\theta} = \cos\theta + j\sin\theta.
$$

Here are a few useful identities implied by Euler's formula.

$$
e^{-j\theta} = \cos \theta - j \sin \theta
$$

$$
\cos \theta = \Re(e^{j\theta})
$$

$$
= \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)
$$

$$
\sin \theta = \Im(e^{j\theta})
$$

$$
= \frac{1}{j2} \left(e^{j\theta} - e^{-j\theta} \right).
$$

These equations can be considered to be describing a vector in the **complex plane**, which is illustrated in [figure 3.1.](#page--1-0) Note that a $e^{j\theta}$ has both a *magnitude* and a *phase*.

