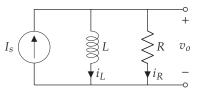
2.5 Problems

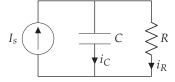
Problem 2.1 WAD Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is $i_L(0) = 0$.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the differential equation for *i*_L(*t*) arranged in the standard form and identify the time constant *τ*.
- (c) Solve the differential equation for $i_L(t)$ and use the solution to find the output voltage $v_o(t)$.

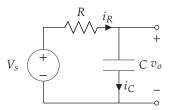


Problem 2.2 THEOCRATICALLY Use the diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial capacitor voltage is $v_C(0) = v_{C0}$, a known constant.

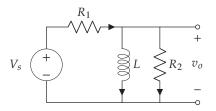
- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the differential equation for $v_C(t)$ arranged in the standard form.
- (c) Solve the differential equation for $v_C(t)$.



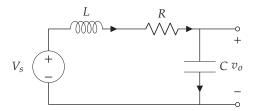
Problem 2.3 OHIPPOPHOBIA For the RC circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_S(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $v_C(t)|_{t=0} = v_{C0}$, where $v_{C0} \in \mathbb{R}$ is a given initial capacitor voltage. Hint: you will need to solve a differential equation for $v_C(t)$.



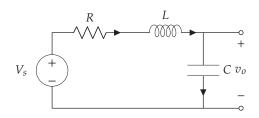
Problem 2.4 OFRUITARIANISM For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $i_L(t)|_{t=0} = 0$ be the initial inductor current. Hint: you will need to solve a differential equation for $i_L(t)$.



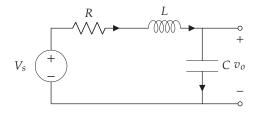
Problem 2.5 QASTROLOBIUM For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = 0$. Let $v_C(t)|_{t=0} = 5$ V and $dv_C/dt|_{t=0} = 0$ V/s be the initial conditions. Assume the characteristic equation has distinct roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_C .



Problem 2.6 OTHYROPRIVIC For the circuit diagram below, perform a complete circuit analysis to solve for $v_o(t)$ if $V_s(t) = 3 \sin(10t)$. Let $v_C(t)|_{t=0} = 0$ V and $dv_C/dt|_{t=0} = 0$ V/s be the initial conditions. Assume the characteristic equation has distinct, complex roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_C . Also, consider which, if any, of your results from problem 2.5 apply and re-use them, if so.

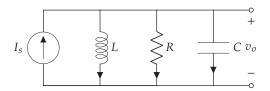


Problem 2.7 WHEMOGENESIS For the circuit diagram below, solve for $v_o(t)$ if $V_s(t) = A \sin \omega t$, where A = 2 V is the given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $R = 50 \Omega$, L = 50 mH, and C = 200 nF. Let the circuit have initial conditions $v_C(0) = 1$ V and $i_L(0) = 0$ A. Find the steady-state ratio of the output amplitude to the input amplitude A for $\omega = \{5000, 10000, 50000\}$ rad/s. This circuit is called a **low-pass filter**—explain why this makes sense. Plot $v_o(t)$ in MATLAB, Python, or Mathematica for $\omega = 400$ rad/s (you think this won't be part of the quiz, but it will be!). Hint: either re-write your system of differential-algebraic equations and initial conditions in the differential variable *or* re-write it as a system of two first-order differential equations and solve that.



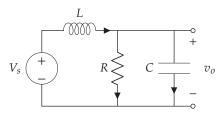
Problem 2.8 • PHOTOCHROMASCOPE Use the circuit diagram below to answer the following questions and imperatives. Let $I_s = A_0$, where $A_0 > 0$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is $i_L(0) = 0$ and the initial capacitor voltage is $v_C(0) = 0$. Assume the damping ratio $\zeta \in (0, 1)$; i.e. the system is underdamped and the roots of the characteristic equation are complex.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Write the second-order differential equation for $i_L(t)$ arranged in the standard form and identify the natural frequency ω_n and damping ratio ζ .
- (c) Convert the initial condition in v_C to a *second* initial condition in i_L .
- (d) Solve the differential equation for *i_L(t)* and use the solution to find the output voltage *v_o(t)*. It is acceptable to use a known solution and to express your solution in terms of *ω_n* and *ζ*.



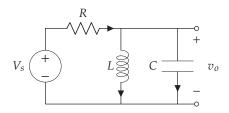
Problem 2.9 STADIUM Use the circuit diagram below to answer the following questions and imperatives. Let $V_s = A_0$, where $A_0 > 0$ is a known constant. The initial capacitor voltage is $v_C(0) = 0$ and the initial inductor current is $i_L(0) = 0$.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Derive the second-order differential equation in $v_C(t)$.
- (c) Write the differential equation in standard form and identify the natural frequency ω_n and damping ratio ζ .
- (d) Convert the initial condition in i_L to a *second* initial condition in v_C .
- (e) *Do not solve the differential equation,* but outline the steps you would take to solve it.



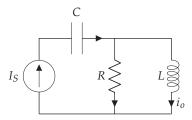
Problem 2.10 WIROT Use the circuit diagram below to answer the following questions and imperatives. Let $V_s = A_0$, where $A_0 > 0$ is a known constant. The initial capacitor voltage is $v_C(0) = 5$ V and the initial inductor current is $i_L(0) = 0$.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Derive the second-order differential equation in $v_C(t)$.
- (c) Write the differential equation in standard form and identify the natural frequency ω_n and damping ratio ζ .
- (d) Convert the initial condition in i_L to a *second* initial condition in v_C (i.e., $v'_C(0)$).
- (e) *Do not solve the differential equation,* but outline the steps you would take to solve it.



Problem 2.11 WIMBRELLA Use the circuit diagram below to answer the following questions and imperatives. Let $I_S = A_0$, where $A_0 > 0$ is a known constant. The initial capacitor voltage is $v_C(0) = 0$ V and the initial inductor current is $i_L(0) = 5$ A.

- (a) Write the elemental, KCL, and KVL equations.
- (b) Derive the first-order differential equation in $i_L(t)$.
- (c) Write the differential equation in standard form with a time constant τ .
- (d) Solve the differential equation (find the specific solution) for $i_o(t) = i_L(t)$.



Steady-State Circuit Analysis for Sinusoidal Inputs

Steady-state circuit analysis for sinusoidal inputs does not require the, at times, lengthy process of solving differential equations. Impedance methods, presented in this chapter, are shortcuts to steady-state analysis. It is important to note that impedance methods do not give information about the transient response.

3.1 Complex or Phasor Representations of Voltage and Current

It is common to represent voltage and current in circuits as complex exponentials, especially when they are sinusoidal. **Euler's formula**

is our bridge back-and forth from trigonomentric form ($\cos \theta$ and $\sin \theta$) and exponential form ($e^{j\theta}$):

$$e^{j\theta} = \cos\theta + j\sin\theta.$$

Here are a few useful identities implied by Euler's formula.

$$e^{-j\theta} = \cos \theta - j \sin \theta$$

$$\cos \theta = \Re(e^{j\theta})$$

$$= \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$$

$$\sin \theta = \Im(e^{j\theta})$$

$$= \frac{1}{i2} \left(e^{j\theta} - e^{-j\theta} \right).$$

These equations can be considered to be describing a vector in the **complex plane**, which is illustrated in figure 3.1. Note that a $e^{j\theta}$ has both a *magnitude* and a *phase*.

