01.2 fun.vdiv Voltage dividers

In Chapter 02 can we'll learn about how to approach circuit analysis in a systematic way. For now, we'll limp along unsystematically with our toolbelt of concepts and equations in order to introduce some more circuit elements, concepts, and theorems. But we can't resist just a bit of circuit analysis now.
The voltage divider is a ubiquitous and useful circuit. In a sense, it's less of a circuit and more of concept. For resistors, that concept can be stated as the following.

The voltage across resistors in series is divided among the resistors.

An immediately useful result is that we can "divide voltage" into any smaller voltage we like by putting in a couple resistors.
In order to show how the voltage divider "divides up" the voltage, we must do some basic circuit analysis. Consider the circuit in Fig. vdiv.1. The input voltage $v_{\text {in }}$ is divided into $v_{\mathrm{R}_{1}}$ and $\nu_{\mathrm{R}_{2}}=v_{\text {out }}$. We want to know $v_{\text {out }}$ as a function of $v_{\text {in }}$ and parameters R_{1} and R_{2}. Let's write down the equations we know from the laws of Kirchhoff and Ohm:

Figure vdiv.1: a simple voltage divider circuit.

We've already established that $v_{\text {out }}=v_{R_{2}}$, so we can solve for $v_{R_{2}}$ in (*). We want to eliminate the three "unknown" variables $v_{R_{1}}, i_{R_{1}}$, and $i_{R_{2}}$, so it is good that we have four equations. ${ }^{3}$ We begin with ($* \mathrm{~b}$) and proceed by substitution of the others of ($*$):
\square
Nice! So we can now write the input-output relationship for a two-resistor voltage divider.

> Equation 1 two-resistor voltage divider

So the voltage divider had the effect of dividing the input voltage into a fraction governed by the relationship between the relative resistances of the two resistors. This fraction takes values in the interval $[0,1]$. Now, whenever we see the voltage divider circuit, we can just remember this easy formula!
Similarly, for n resistors in series, it can be shown that the voltage divider relationship is as follows.
3. Alternatively, we could solve for all four unknown variables with our four equations.

Equation 2 general voltage divider

