02.5 can.exe Exercises for Chapter 02 can

Exercise 02.1 mad

Use the diagram below to answer the following questions and imperatives. Let $I_{s}=A_{0}$, where $A_{0} \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial inductor current is $i_{L}(0)=0$.
(a) Write the elemental, KCL, and KVL equations.
(b) Write the differential equation for $i_{L}(t)$ arranged in the standard form and identify the time constant τ.
(c) Solve the differential equation for $i_{L}(t)$ and use the solution to find the output voltage $v_{o}(t)$.

Exercise 02.2 theocratically

Use the diagram below to answer the following questions and imperatives. Let $I_{s}=A_{0}$, where $A_{0} \in \mathbb{R}$ is a known constant. Perform a full circuit analysis, including the transient response. The initial capacitor voltage is $v_{\mathrm{C}}(0)=v_{\mathrm{C} 0}$, a known constant.
(a) Write the elemental, KCL, and KVL equations.
(b) Write the differential equation for $v_{C}(t)$ arranged in the standard form.
(c) Solve the differential equation for $v_{\mathrm{C}}(\mathrm{t})$.

Exercise 02.3 hippophobia

For the RC circuit diagram below, perform a complete circuit analysis to solve for $v_{0}(t)$ if $V_{S}(t)=A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $\left.v_{\mathrm{C}}(\mathrm{t})\right|_{\mathrm{t}=0}=v_{\mathrm{C} 0}$, where $v_{\mathrm{C} 0} \in \mathbb{R}$ is a given initial capacitor voltage. Hint: you will need to solve a differential equation for $v_{\mathrm{C}}(\mathrm{t})$.

Exercise 02.4 fruitarianism

For the circuit diagram below, perform a complete circuit analysis to solve for $v_{0}(t)$ if $V_{s}(t)=A \sin \omega t$, where $A \in \mathbb{R}$ is a given amplitude and $\omega \in \mathbb{R}$ is a given angular frequency. Let $\left.i_{L}(t)\right|_{t=0}=0$ be the initial inductor current. Hint: you will need to solve a differential equation for $i_{L}(t)$.

Exercise 02.5 gastrolobium

For the circuit diagram below, perform a complete circuit analysis to solve for $v_{o}(t)$ if $V_{s}(\mathrm{t})=0$. Let $\left.v_{\mathrm{C}}(\mathrm{t})\right|_{\mathrm{t}=0}=5 \mathrm{~V}$ and $\mathrm{d} v_{\mathrm{C}} /\left.\mathrm{dt}\right|_{\mathrm{t}=0}=0 \mathrm{~V} / \mathrm{s}$ be the initial conditions. Assume the characteristic equation has distinct roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_{C}.

Exercise 02.6 thyroprivic

For the circuit diagram below, perform a complete circuit analysis to solve for $v_{o}(t)$ if $V_{s}(t)=3 \sin (10 t)$. Let $\left.v_{C}(t)\right|_{t=0}=0 V$ and $\mathrm{d} v_{\mathrm{C}} /\left.\mathrm{dt}\right|_{\mathrm{t}=0}=0 \mathrm{~V} / \mathrm{s}$ be the initial conditions. Assume the characteristic equation has distinct, complex roots. Recommendation: due to the initial conditions being given in it, solve the differential equation in v_{C}. Also, consider which, if any, of your results from Exercise 02.5 can. apply and re-use them, if so.

Exercise 02.7 hemogenesis

For the circuit diagram below, solve for $v_{o}(t)$ if $V_{s}(t)=A \sin \omega t$, where $A=2 V$ is the given amplitude and $\omega \in \mathbb{R}$ is a given angular
frequency. Let $R=50 \Omega, \mathrm{~L}=50 \mathrm{mH}$, and
$\mathrm{C}=200 \mathrm{nF}$. Let the circuit have initial conditions
$v_{\mathrm{C}}(0)=1 \mathrm{~V}$ and $i_{\mathrm{L}}(0)=0 \mathrm{~A}$. Find the
steady-state ratio of the output amplitude to the input amplitude A for $\omega=\{5000,10000,50000\}$ $\mathrm{rad} / \mathrm{s}$. This circuit is called a low-pass
filter-explain why this makes sense. Plot $v_{o}(t)$
in MATLAB, Python, or Mathematica for $\omega=400 \mathrm{rad} / \mathrm{s}$ (you think this won't be part of the quiz, but it will be!). Hint: either re-write your system of differential-algebraic equations and initial conditions as a single second-order differential equation with initial conditions in the differential variable or re-write it as a system of two first-order differential equations and solve that.

Exercise 02.8 photochromascope

Use the circuit diagram below to answer the
following questions and imperatives. Let
$I_{s}=A_{0}$, where $A_{0}>0$ is a known constant.
Perform a full circuit analysis, including the transient response. The initial inductor current is $i_{L}(0)=0$ and the initial capacitor voltage is $v_{\mathrm{C}}(0)=0$. Assume the damping ratio $\zeta \in(0,1)$; i.e. the system is underdamped and the roots of the characteristic equation are complex.
(a) Write the elemental, KCL, and KVL equations.
(b) Write the second-order differential equation for $\mathfrak{i}_{L}(t)$ arranged in the standard form and identify the natural frequency ω_{n} and damping ratio ζ.
(c) Convert the initial condition in v_{C} to a second initial condition in i_{L}.
(d) Solve the differential equation for $i_{L}(t)$ and use the solution to find the output voltage $v_{\mathrm{o}}(\mathrm{t})$. It is acceptable to use a known solution and to express your solution in terms of ω_{n} and ζ.

Exercise 02.9 stadium

Use the circuit diagram below to answer the following questions and imperatives. Let $V_{s}=A_{0}$, where $A_{0}>0$ is a known constant. The initial capacitor voltage is $v_{C}(0)=0$ and the initial inductor current is $i_{L}(0)=0$.
(a) Write the elemental, KCL, and KVL equations.
(b) Derive the second-order differential equation in $v_{\mathrm{C}}(\mathrm{t})$.
(c) Write the differential equation in standard form and identify the natural frequency ω_{n} and damping ratio ζ.
(d) Convert the initial condition in i_{L} to a second initial condition in v_{C}.
(e) Do not solve the differential equation, but outline the steps you would take to solve it.

Steady-state circuit analysis

Steady-state circuit analysis does not require the, at times, lengthy process of solving differential equations. Impedance methods, presented in this chapter, are shortcuts to steady-state analysis. It is important to note that impedance methods do not give information about the transient response.

