03.2 ssandimp Impedance

With complex representations for voltage and current, we can introduce the concept of impedance.

Definition 03 ssan.1: impedance

Impedance Z is the complex ratio of voltage v to current i of a circuit element:

$$
Z=\frac{v}{i} .
$$

The real part $\operatorname{Re}(Z)$ is called the resistance and the imaginary part $\operatorname{Im}(Z)$ is called the reactance. As with complex voltage and current, we can represent the impedance as a phasor.
Note that Definition 03 ssan. 1 is a generalization of Ohm's law. In fact, we call the following expression generalized Ohm's law:

$$
v=i Z .
$$

Impedance of circuit elements

The impedance of each of the three passive circuit elements we've considered thus far are listed, below. Wherever it appears, ω is the angular frequency of the element's voltage and current.
resistor For a resistor with resistance R, the impedance is all real:

capacitor For a capacitor with capacitance C, the impedance is all imaginary:

inductor For an inductor with inductance L, the impedance is all imaginary:

These are represented in the complex plane in Fig. imp.1.

Combining the impedance of multiple

 elementsAs with resistance, the impedance of multiple elements may be combined to find an effective impedance.
K elements with impedances Z_{j} connected in series have equivalent impedance Z_{e} given by the expression

$$
Z_{e}=\sum_{j=1}^{K} Z_{j} .
$$

K elements with impedances Z_{j} connected in parallel have equivalent impedance Z_{e} given by the expression

$$
Z_{e}=1 / \sum_{j=1}^{K} 1 / Z_{j} .
$$

Figure imp.1: the impedance of a resistor Z_{R}, a capacitor Z_{C}, and an inductor Z_{L} in the complex plane.

In the special case of two elements with impedances Z_{1} and Z_{2},

Example 03.2 ssan.imp-1

Given the circuit shown with voltage source $V_{s}(t)=A e^{j \phi}$, what is the total impedance at the source?

