04.1 nlnmul.tx Transformers

Electrical transformers are two-port linear

elements that consist of two tightly coupled coils of wire. Due to the coils' magnetic field interaction, time-varying current through one side induces a current in the other (and vice-versa).
Let the terminals on the primary (source) side have label " 1 " and those on the secondary (load) side have label " 2 ," as shown in Fig. tx.1. These devices are very efficient, so we often assume no power loss. With this assumption, the power into the transformer must sum to zero, giving us one

Figure tx.1: circuit symbol for a transformer with a core. Those with "air cores" are denoted with a lack of vertical lines.
voltage-current relationship:

Note that with two ports, we need two elemental equations to fully describe the voltage-current relationships. Another equation can be found from the magnetic field interaction. Let N_{1} and N_{2} be the number of turns per coil on each side and $N \equiv N_{2} / N_{1}$. Then

These two equations can be combined to form the following elemental equations.

Definition 04 nlnmul.1: transformer
elemental equations

$$
v_{2}=\mathrm{N} v_{1} \quad \mathfrak{i}_{2}=-\frac{1}{\mathrm{~N}} \mathfrak{i}_{1}
$$

So we can step-down voltage if $N<1$. This is better, in some cases, than the voltage divider because it does not dissipate much energy. However, transformers can be bulkier and somewhat nonlinear; moreover, they only work for ac signals. Note that when we step-down voltage, we step-up current due to our power conservation assumption.
If $N>1$ we can step-up voltage. Voltage dividers cannot do this! It is not amplification, however, because power is conserved-we simultaneously step-down current. So with a transformer, we can freely trade ac voltage and current.

Example 04.1 nlnmul.tx-1
Given the circuit shown, what is the effective impedance of Z_{L} on the source side?

