04.5 nlinmul.exe Exercises for Chapter 04 nlnmul

Exercise 04.1 rhinoceros

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).
(a) Write the equivalent impedance of a resistor R and an inductor L in series. Express the result in rectangular and polar (phasor) form.
(b) How do you find the Norton equivalent resistance?
(c) Explain how a diode operates in forward-bias.
(d) In a MOSFET, how much current will flow from the drain D to the source S when the gate-source voltage is 0.3 V ? Succinctly explain/justify.

Exercise 04.2 flamingo

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).
(a) Describe a couple differences between MOSFETs and opamps.
(b) If a DC source is connected to a circuit in steady state, describe how an inductor in the circuit will be operating.
(c) If a transformer increases an AC signal's voltage by a factor of 119 , what happens to the signal's current?
(d) How do we determine the diode resistance for the piecewise linear model of a diode?

Figure exe.1: circuit diagram for Exercise 04.4 nlnmul. and Exercise 04.5 nlnmul..

Exercise 04.3 astringent

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).
(a) If the current through an inductor is suddenly switched off, what happens?
(b) Let the output voltage of a resistor circuit be 5 V and the equivalent resistance 500Ω. What is the Thevenin equivalent circuit?
(c) In the preceding part of this question, what is the Norton equivalent?
(d) When can we use impedance analysis?

Exercise 04.4 prolongate

For the circuit diagram of Fig. exe.1, solve for $v_{o}(t)$ if $V_{s}(t)=A \cos \omega t$. Let $N=n_{2} / n_{1}$, where n_{1} and n_{2} are the number of turns in each coil, 1 and 2 , respectively. Also let $i_{L}(0)=0$ be the initial condition.

Exercise 04.5 synopses

Re-do Exercise 04.4 nlnmul., but only consider the steady-state response. Use impedance methods!

(a)

(d)

Figure exe.2: diode circuits for Exercise 04.6 ninmul..

Exercise 04.6 spartanism

When considering the steady state of circuits with only DC sources, all voltages and currents are constant and all diodes are in constant states (each is ON or OFF). The methods of Lec. 04.2 nlnmul.dio still apply, of course, but we needn't be concerned with a time evolution. Consider the circuits of Fig. exe.2. For each circuit, solve for the voltage across the $5 \mathrm{k} \Omega$ resistor. Treat each diode as an ideal diode.

Exercise 04.7 outsmart

Repeat Exercise 04.6 nlnmul., but use the piecewise linear model of each diode.

Exercise 04.8 combmaker

A diode clipping circuit is one that "clips" the tops and or bottoms of a signal. These circuits can be used to set a maximum or minimum voltage for a signal.
Consider the diode clipping circuit of Fig. exe.3.
Source V_{1} effectively adjusts the maximum possible load voltage $v_{R_{\mathrm{L}}}$, and V_{2} the minimum. Let $\mathrm{V}_{\mathrm{S}}(\mathrm{t})=10 \cos 4 \pi \mathrm{t}, \mathrm{V}_{1}=5 \mathrm{~V}, \mathrm{~V}_{2}=-3 \mathrm{~V}$, and $R_{s}=R_{L}=50 \Omega$. Solve for $v_{R_{L}}(t)$. Use the ideal diode model.

Figure exe.3: a diode clipping circuit for Exercise 04.8 nlnmul..

Exercise 04.9 cloisteral

Repeat Exercise 04.8 nlnmul., but use the piecewise linear model of each diode.

Exercise 04.10 diaspora

For the circuit diagram of Fig. exe.4, solve for $\nu_{o}(t)$ if $V_{s}(t)=A$ for some given $A>0.6 \mathrm{~V}$. Let $\left.v_{\mathrm{C}}(\mathrm{t})\right|_{\mathrm{t}=0}=0 \mathrm{~V}$ be the initial condition. Use a piecewise linear model for the diode with some $R_{d} \in \mathbb{R} \geqslant 0$. Do not estimate R_{d}.

Exercise 04.11 porosity

For the circuit shown in Fig. exe.5, determine the voltage across the load $v_{R_{L}}$ in terms of

Figure exe.4: circuit diagram for Exercise 04.10 ninmul..
parameters and the gate voltage source voltage V_{g} and V_{s}. The parameters of the MOSFET are K and V_{T}. Assume MOSFET saturation operation.

Figure exe.5: circuit for Exercise 04.11 nlnmul..

Exercise 04.12 overbroil

The opamp circuit of Fig. exe. 6 is used as a voltage-controlled current source for the load R_{L}. Show that it behaves as a current source with current $i_{R_{L}}$ controlled by voltage source v_{i}. Use two separate methods: (a) assuming $v_{+} \approx v_{-}$and (b) not assuming $v_{+} \approx v_{-}$, rather, assuming the open loop gain of the opamp A is large. Comment on the differences between the methods of (a) and (b).

Figure exe.6: circuit for Exercise 04.12 nlnmul..

Exercise 04.13 polynucleate

Use the circuit diagram of Fig. exe. 7 to answer the questions below. Use the sign convention from the diagram. Let $v_{i}=A \cos \omega t$ be an ac input voltage. The load Z_{L} impedance is not given.
(a) Write the elemental equations in terms of $Z_{R_{1}}, Z_{R_{2}}, Z_{R_{S}}$ and Z_{L} (the impedances of the components).
(b) Write the KCL and KVL equations.
(c) Solve for the steady-state $v_{o}(\mathrm{t})$ without
inserting the values of the impedances (that is, leave it in terms of $Z_{R_{1}}, Z_{R_{2}}, Z_{R_{S}}$ and $\left.Z_{L}\right)$.

Figure exe.7: circuit for Exercise 04.13 nlnmul..

Exercise 04.14 lush

Consider the circuit in Fig. exe.8. Solve for $v_{o}(t)$
for input voltage $v_{i}(t)=5 \mathrm{~V}$, a sine wave of
$v_{i}(t)=5 \sin 25 t$, and a sine wave of
$v_{i}(\mathrm{t})=5 \sin 2525 \mathrm{t}$. Let $\mathrm{R}_{1}=50 \Omega, \mathrm{R}_{2}=10 \mathrm{k} \Omega$,
$\mathrm{C}=10 \mu \mathrm{~F}$, and the opamp open-loop gain be
$A=10^{5}$. Let the initial condition be $v_{C}(t)=0 \mathrm{~V}$.
In each case, plot the solution to show the transient response until it reaches steady-state.

Figure exe.8: opamp circuit for Exercise 04.14 ninmul.

Exercise 04.15 hogwash

Consider the circuit in Fig. exe.9. Solve for $v_{o}(t)$ for a known input voltage $v_{i}(\mathrm{t})$.

Figure exe.9: opamp circuit for Exercise 04.15 ninmul.

Exercise 04.16 virtue

In each of the figures of Fig. exe.10, solve for the voltage v_{100} across the 100Ω resistor. Use the assumptions in the associated caption. Clearly justify each response.

(a) $\mathrm{V}_{\mathrm{T}}=0.7 \mathrm{~V}, \mathrm{~K}=0.5 \mathrm{~mA} / \mathrm{V}^{2}$

(b) $\mathrm{V}_{\mathrm{S}}=5 e^{\mathrm{j0}}, \mathrm{~N}=5$

(c)

(d) D is ideal

Figure exe.10: circuits for Exercise 04.16 nlnmul..

Exercise 04.17 nonabstract

Consider the circuit below with input voltage sources V_{S} and V_{g}. Determine V_{g} such that the load voltage $v_{R_{\mathrm{L}}}=10 \mathrm{~V}$. Let $R_{\mathrm{L}}=2 \mathrm{k} \Omega$, $\mathrm{K}=0.5 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{T}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=20 \mathrm{~V}$.

Exercise 04.18 ear

Consider the circuit below with input voltage source $V_{S}(t)=A$ where $A>0$ is a known (but unspecified) constant. Perform a circuit analysis to solve for $v_{o}(t)$ for the initial condition $v_{\mathrm{C}}(0)=0$. Hint: it is easier if you realize the opamp output voltage is effectively an ideal voltage source (so it does not depend on $v_{R_{3}}$ and v_{C}) and you can therefore treat the two parts of the circuit separately.

Exercise 04.19 satisfied

In each of the figures of Fig. exe.11, solve for the
\qquad /32 p. voltage $v_{1 \mathrm{k}}$ across the $1 \mathrm{k} \Omega$ resistor. Use the assumptions in the associated caption. Clearly justify each response.

Figure exe.11: circuits for Exercise 04.19 nlnmul..

Exercise 04.20 haunt

Write a one- or two-sentence response to each of the following questions and imperatives. The use of equations is acceptable when they appear in a sentence. Don't quote me (use your own words, other than technical terminology).
(a) Give an example of an application of a transformer and explain how the transformer functions for this application.
(b) Let the output current of a resistor circuit be 1 A and the equivalent resistance 100Ω. What is the Norton equivalent circuit?
(c) In the preceding part of this question, what is the Thevenin equivalent?
(d) If a wire is connected between the terminals of a battery, what happens?

Algebra and trigonometry reference

