
REVIE
W

DRAFT

Chapter 04 Finite state machine control Lecture 04.04 Finite state machines

Lecture 04.04 Finite state machines

A program that sequences a series of actions, or handles inputs differently
depending on what mode it’s in, is often implemented as a finite state
machine. A state is a condition that defines a prescribed relationship state

between inputs and outputs, and between inputs and subsequent states. A
finite state machine is an algorithm that can be in a finite number of different finite state machine

states.
For example, consider the control algorithm for an elevator operating

between two floors. The elevator has four possible states:

1. stopped on floor-1,
2. stopped on floor-2,
3. moving up, and
4. moving down.

Inputs include:

1. the buttons that are pushed in the elevator car and on each floor and
2. limit switches indicating that the car has reached each floor.

The outputs are the commands

1. to the lift motor,
2. to the elevator doors, and
3. to the indicator displays in the car and on the floors.

The outputs and the transition from one state to another depend on the
current state and inputs.

A state machine for which the outputs are functions of both the current
state and the inputs is called a Mealy machine. A state machine for which Mealy machine

the outputs are functions of only the current state is called a Moore machine. Moore machine

An advantage of using state machines is that the necessary logic can
be represented graphically in a state transition diagram. A state transition
diagram shows the input/output relationships and the conditions for
transitions between states. A skeleton of code that implements any state
transition diagram can be standardized.

Let’s examine the state transition diagram for a simple example, and
see how it might be coded. This system contains three states (A, B, and C). states

Its only input is the sequential count of a variable Clock (0, 1, 2, . . .). Its
outputs are a variable out and the Clock (which the algorithm may reset

139 24 April 2020, 13:48:08 04.04 3 1

REVIE
W

DRAFT

Chapter 04 Finite state machine control Lecture 04.04 Finite state machines

1 2 3 4 5 2 3 4 56 79 88 9 1

...

...
...

0 0

Clock

out = 2
out = 1
out = 0

state-A state-B state-C state-A state-B

Figure 04.6:

state-A state-B

state-C

Clock = 2 / out = 1

Clock = 5 / out = 2 Clock = 9 / out = 0;
 clock = 0

Figure 04.7:

to 0). The clock increments at a fixed rate. Potential state transitions are
evaluated at each clock count.

The state machine operates as follows. The system stays in A until
Clock == 2, then it sets out = 1, and changes to B. It stays in B until
Clock == 5, then sets out = 2, and changes to C. Finally, it stays in C
until Clock == 9, then sets out = 0, resets the clock (Clock = 0), and
changes back to A. The process repeats indefinitely, producing a periodic
output of 9 clock counts. A plot of the output would look like that of
Figure 04.6.

This complicated natural language specification of the system operation
can be represented very simply in a state transition diagram, such as that ofstate transition

diagram Figure 04.7.
The arrows between states are commonly labeled as:〈

event that caused
the transition

〉/〈 output(s) as a
result of the

transition

〉

Often the information in the state transition diagram is described in the
form of a state transition table, such as that of Table 04.2.state transition

table

140 24 April 2020, 13:48:08 04.04 3 2

REVIE
W

DRAFT

Chapter 04 Finite state machine control Lecture 04.04 Finite state machines

Table 04.2: state transition table with©: no change.

when and input is then output and make
state is state

Clock out Clock

A 2 1 © B
B 5 2 © C
C 9 0 0 A

As shown, the table lists all possible transitions between states, the
conditions that cause the state transitions, and the corresponding outputs.

Now, how can this be efficiently coded? The listing on the following
page illustrates one possibility.2 You will need to study this code carefully.
Be sure that you understand all the C constructs. Some of them are tricky!

Each state is implemented as a separate C function. The heart of the
program is the “Main state transition loop” (note: just three lines of code!)
This infinite loop calls the function corresponding to the current state. The
variable curr_state keeps track of which state is current. The loop also
causes a wait for one clock period, increments Clock, and then repeats.

The primary task of each state function is to determine if the current
state should be changed. If no change is needed, the function does nothing.
If the state is to be changed, the function sets curr_state to the new state
and alters the outputs appropriately.

A function, initializeSM, is included in the following to initialize
the state machine.

/* State Machine Example */

#include <stdio.h>

/* Prototypes */
void stateA(void);
void stateB(void);
void stateC(void);
void initializeSM(void);
void wait(void);

/* Define an enumerated type for states */

2See also Gomez (2000).

141 24 April 2020, 13:48:08 04.04 3 3

REVIE
W

DRAFT

Chapter 04 Finite state machine control Lecture 04.04 Finite state machines

typedef enum {STATE_A=0, STATE_B, STATE_C} State_Type;

/* Define an array of pointers to each state function */
static void (*state_table[])(void) = {

stateA, stateB, stateC
};

/* Global variable declaration */
static State_Type curr_state; // The "current state"
static int Clock;
static int out;

void main(void) {
/* Initialize the state machine */
initializeSM();

/* Main state transition loop */
while (1) {

state_table[curr_state](); // call cur. state fnct.
wait(); // wait fixed time interval
Clock++;

}
}

/* SM initialization function */
void initializeSM(void) {

curr_state = STATE_A;
out = 0;
Clock = 1;

}

/* State functions */
void stateA(void) {

if(Clock == 2) { // change state?
curr_state = STATE_B; // next state
out = 1; // new output

}
}

void stateB(void) {
if(Clock == 5) { // change state?

curr_state = STATE_C; // next state
out = 2; // new output

}
}

142 24 April 2020, 13:48:08 04.04 3 4

REVIE
W

DRAFT

Chapter 04 Finite state machine control Lecture 04.04 Finite state machines

void stateC(void) {
if(Clock == 9) { // change state?

Clock = 0; // reset clock
curr_state = STATE_A; // next state
out = 0; // new output

}
}

At first, this may appear to be unnecessarily complicated for this simple
example. However, the same code can be expanded easily (by adding more
state functions) to implement a state machine of any complexity, with an
unlimited number of states, inputs, and outputs.

143 24 April 2020, 13:48:08 04.043 5

