
REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

Lab Exercise 08 DC motor PID position control

Lab 08.1 Objectives

The objectives of this exercise are to:

1. implement a position control system for an inertia dominated load,
2. explore appropriate path planning, and
3. integrate the use of a standard Matlab design tool into the application

development system.

Lab 08.2 Introduction

In this exercise, a closed-loop position control system for the DC motor will
be developed. The physical system is identical to that of Lab Exercise 07:
as shown in Figure 08.1, the optical encoder (through the FPGA), the
D/A converter (connected to the motor amplifier), and the periodic timer
interrupt will be combined to control the DC motor.

A Matlab tool will be used to design an appropriate proportional-
integral-derivative (PID) controller, shown in Figure 08.2. Later, you will
evaluate the controller performance for a time-varying position reference
path xref(t).

This project builds on your past work. The program is structurally
similar to that of Lab Exercise 07, and many of its components are reused.

LCD Display

Keypad

Current
Amplifier

Encoder

Xilinx Zynq-7010

NI myRIO-1900

FPGA

Processors

AO

DIODIO

UART

/
8

DC
Motor/

2

Figure 08.1: schematic of the test apparatus.

231 24 April 2020, 13:48:08 Lab 083 1



REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

+

-

e(s) u(s)
H(s)

Output

Motor

error control

Figure 08.2: block diagram of the system with a PID controller in the loop.

Figure 08.3: a method of path planning for position control is to integrate piecewise-
constant acceleration (top), to obtain piecewise-linear velocity (middle), also to be inte-
grated to obtain piecewise-quadratic (and continuously differentiable) position (bottom).

Lab 08.3 Path planning

A common task for a positioning system is to start from a stationary
position, move to a new location, and then stop. Of course, one way to
do this is to apply an appropriate size step to the reference input of the
position control system. However, depending on the system bandwidth,
a sufficiently large step may require torques (current) and/or velocities
(voltages) that exceed the motor/driver capabilities. In addition, the
dynamic characteristics (e.g. rise time and overshoot) may be inconsistent
with the application requirements. One remedy is to use a form of
truncated ramp instead of the step reference input.

Suppose that we wish to reposition a mass-dominated load by Xmax
as rapidly as possible, subject to limitations on the maximum acceleration
Amax and velocity Vmax, while avoiding discontinuities in the position slope.
One such command is constructed as shown in Figure 08.3.

232 24 April 2020, 13:48:08 Lab 083 2



REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

The motion has been divided into three sections: acceleration, constant
velocity, and deceleration. Within this scheme, many variations are possi-
ble: High Amax would result in a long constant velocity section, with short
accelerations. Alternately, for high Vmax, the displacement would approach
an s-shaped curve with no constant velocity section. Finally, by allowing
both high Amax and Vmax, the curve would approach a step.

In this lab exercise, you will use a C function Sramps that implements
this time-varying displacement as the control system reference input. The
function can link any number of ramp segments in succession, including
specified dwell times at the end of each segment. It can also repeat the
sequence of ramps indefinitely. See Lab 08.6 and Resource 16 for details.

Lab 08.4 PID control design and evaluation

For the lab exercise, you will write two Matlab scripts: one to design your
PID controller and another to compare its performance to an analytical
model. Specifically, the first script will design a PIDF controller using the
MATLAB Control System toolbox function pidtune. This compensator
should be designed to track the reference input, and to have control
bandwidth of 8 Hz. A PIDF controller improves noise immunity of a PID
controller by limiting the high-frequency response of the derivative term.
Check your controller design by plotting the closed-loop step response
using the plant parameters from Lab Exercise 07.

The script should convert the continuous-time transfer function to
discrete-time (c2d, tf, and tfdata, with sample time T = 0.0005 s), and
then use tf2sos (transfer functions to second order sections) to break
the transfer function into biquads. Finally, use the sos2header function
(see Resource 17) to write the biquad filter to a C header file (PIDF.h) in
your Lab Exercise 08 project folder. That header can be #included in
your myRIO C program (after the definition of the biquad struct.) In
this way, when you run your C program in Eclipse, it will automatically
incorporate the latest version of your compensator design.

As in Lab Exercise 07, your second script will load the actual response
of position control system (Lab8.mat), and compare it to both the ideal
reference displacement and the dynamic model prediction. See below for
details.

233 24 April 2020, 13:48:08 Lab 083 3



REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

Lab 08.5 Program description

The program is similar in structure to that of Lab Exercise 07, consisting of
(1) a Main thread that initializes the task and calls ctable2 to communi-
cate with the user, and (2) a Timer thread that maintains timing using an
interrupt, implements the position control, and saves the results. Your spe-
cific controller definition is derived from the header file written from your
Matlab script.

Lab 08.5.1 Two threads

Main thread The main thread performs the following tasks.

1. Initialize the table editor variables.
2. Initialize the path profile variables as follows.

typedef struct {
double xfa; double v; double a; double d;

} seg;

3. Set up the timer IRQ interrupt (as in Lab Exercise 06 and Lab
Exercise 07).

4. As in Lab Exercise 07, register and create the Timer thread to catch
the timer interrupt. The Timer thread will gain access to both the table
data and the path profile through pointers in the Thread resource. For
example,

typedef struct {
NiFpga_IrqContext irqContext; // context
table *a_table; // table
seg *profile; // profile
int nseg; // no. of segs
NiFpga_Bool irqThreadRdy; // ready flag

} ThreadResource;

5. Call the table editor. The table should contain three “show” values,
labeled as follows.

P_ref: revs
P_act: revs
VDAout: mV

6. When the table editor exits, signal the Timer thread to terminate. Wait
for it to terminate.

234 24 April 2020, 13:48:08 Lab 083 4



REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

Timer thread The Timer thread calls the interrupt service routine (ISR).
At the beginning of the starting function, declare convenient names for the
table entries from the table pointer, and for the ramp segment variables. For
example,

double *pref = &((threadResource->a_table+0)->value);
double *pact = &((threadResource->a_table+1)->value);
double *VDAmV = &((threadResource->a_table+2)->value);
seg *mySegs = threadResource->profile;
int nseg = threadResource->nseg;

The Timer thread includes a loop timed by the IRQ, and terminated only
by its ready flag.

Before the control loop begins:

• initialize the analog I/0, and set the motor voltage to zero, using
Aio_Write (as is Lab Exercise 07) and

• set up the encoder counter interface (as in Lab Exercise 04).

Each time through the loop, it should:

1. Get ready for the next interrupt by: waiting for IRQ to assert, then
writing the Timer Write Register, and writing TRUE to the Timer Set
Time Register.

2. Call Sramps to compute the value of the current reference position
Pref. See below.

3. Call pos, to obtain the position of the motor Pact. See below.
4. Compute the current error e = Pref − Pact.
5. Call cascade to compute the control value from the current error

using PIDF control filter. Important: limit the computed control value
to the range [+7.5,−7.5] V.

6. Send the control value to the D/A converter CO0 using Aio_Write.
7. Change the table to reflect the current conditions of the controller.
8. Save the results of this BTI for later analysis. See below.

Lab 08.6 Functions

cascade – The cascade function, called once, from the ISR, during each
BTI, implements the general-purpose linear difference equation algorithm
from Lab Exercise 06. For this lab use the same C code that you used in Lab
Exercise 06. In this case, the number of biquad sections will be 1.

235 24 April 2020, 13:48:08 Lab 083 5



REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

Note that, as in Lab Exercise 06, all calculations should be made in
(double) floating-point arithmetic.
pos – Write a pos function to read the encoder counter and return the
displacement as a (double) in units of BDI (encoder counts), relative to
the first position read.
Sramps – The C function Sramps, given in Resource 16, returns the
current input reference position Pref. The function accepts an input array of
structures, each describing a separate displacement ramp segment. Called
once each cycle of the control loop, Sramps steps through the segments,
then repeats the complete path indefinitely.

We will initialize the path array in main, then pass the array and the
number of segments to the Timer thread through the Thread Resource
(described above in the Main thread section).
First, define the new segment data type seg:

typedef struct {
double xfa; // position (revs)
double v; // velocity limit
double a; // acceleration limit
double d; // dwell time (s)

} seg;

Then, to test the position control system, initialize an array mySegs of type
seg as follows:

vmax = 50.; // rev/s
amax = 20.; // rev/s^2
dwell = 1.0; // s
seg mySegs[8] = { // rev
{10.125, vmax, amax, dwell},
{20.250, vmax, amax, dwell},
{30.375, vmax, amax, dwell},
{40.500, vmax, amax, dwell},
{30.625, vmax, amax, dwell},
{20.750, vmax, amax, dwell},
{10.875, vmax, amax, dwell},
{ 0.000, vmax, amax, dwell}

};
nseg = 8;

Notice that mySegs consists of four increasing ramps of 10.125 revolutions
each, followed by four similar decreasing ramps that will return the motor
to the starting position. All of the segments are subject to the same velocity

236 24 April 2020, 13:48:08 Lab 083 6



REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

and acceleration limits, and all dwell for one second before proceeding to
the next segment.

You should declare the prototype of Sramps as:

int Sramps(
seg *segs, // segments array
int nseg, // number of segments
int *iseg, // current segment index
int *itime, // current time index
double T, // sample period
double *xa // next reference positon

);

At the end of the last segment, Sramps returns the total number of time
steps in all of the segments. It returns 0 otherwise.

A typical call of Sramps might be:

nsamp = Sramps(mySegs, &iseg, nseg, &itime, T, &Pref);

When Sramps is called for the first time, set *itime = -1, and
*iseg = -1, to initialize its operation.

Lab 08.6.1 Saving the responses

The data can be conveniently saved by defining data arrays in the ISR for
each of the reference position, the actual position, and the torque. Then
an auto-incremented index variable is used to store the data in the arrays
during each BTI. Increment the index as needed, stopping when it reaches
the length of the arrays. A convenient length would be 4000 points each.

After the main loop terminates, but while still in the Timer thread, write
the results, to the Lab8.mat file. The results should include:

1. your name (string),
2. the reference position array (rad), cast to double *,
3. the current position array (rad),
4. the torque array (N-m),
5. the PIDF array, cast to double *, and
6. the BTI length (s).

Use the same methods as Lab Exercises 04, 06 and 07 to bring the Lab8.mat
file to Matlab.

237 24 April 2020, 13:48:08 Lab 083 7



REVIE
W

DRAFT

Chapter 08 Path planning Lab Exercise 08: DC motor position control

Lab 08.7 Laboratory procedure

Test and debug your program.

Lab 08.7.1 Matlab analysis

In the second of your Matlab scripts:

1. Load the experimental results from the Lab8.mat file.
2. Define a discrete version of the motor/load plant transfer function

from Lab Exercise 07. Consider using c2d.
3. Form the discrete controller from the values in the PIDF array in

Lab8.mat.
4. Form the closed loop system models relating the reference position
Pref input to the position Pact and torque T outputs:

G1(z) =
Pact(z)

Pref(z)
and G2(z) =

T(z)

Pref(z)
. (08.1)

5. Using lsim, simulate the system to find the theoretical responses for
both the position Pact(t) and the torque T(t) to the reference position
Pref(t) array that you stored in Lab8.mat.

6. In a single Matlab figure plot the results in three subplots versus
time, as follows:

a) reference position, theoretical position, and experimental posi-
tion;

b) experimental error (reference − experimental position) and the-
oretical error (reference − theoretical position); and

c) theoretical and experimental torque.

What do you conclude?

238 24 April 2020, 13:48:08 08.043 8


