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1 Introduction LINK
WB

In this chapter, we will get started with engineering computing by introducing
the topic and setting up our tools to apply it throughout the rest of this book.
Furthermore, the primary elements of the Python programming language are
introduced.

1.1 Introduction LINK
MK

Engineering computing is the type of computing engineers use to
design and analyze engineering systems. It is similar to scientific

computing, and engineering and scientific computing share many tools, but the
techniques and objectives of engineers differ from those of scientists. The computing
tools of an engineer have become essential to the profession, and this has become
increasingly true over the past few decades. Although the field can be considered
inclusive of spreadsheet software and computer-aided design (CAD), we choose
to focus on computer programming, writing text instructions called programs

for a computer to perform calculations and store the results. We leave aside the
important topic of real-time computing in which the computer becomes part of the
engineering system; although it is increasingly important for engineers, it comes
with a host of considerations that are a distraction from engineering computing.
There are many computer languages, but programming languages are those

that are easiest for humans to use. Low-level programming languages give more
control over the computer hardware and can bemore compact; high-level languages
have libraries and features that make programming easier. The most common pro-
gramming languages used for engineering computing are the open-source Python
language and the proprietaryMATLAB language. Both are powerful languages
with large userbases, but Python has been gaining in popularity in recent years.
MATLAB has many built-in tools for engineering computation and “toolboxes”
that extend its functionality beyond the base language. Python, on the other hand,
does not have many built-in tools for engineering computation; however, it has

https://engineering-computing.ricopic.one/wb
https://engineering-computing.ricopic.one/wb
https://engineering-computing.ricopic.one/mk
https://engineering-computing.ricopic.one/mk
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code libraries called packages that can be used for engineering computing. We will
use a few key packages in this book, and there are many more available on the Inter-
net, especially at https://engineering-computing.ricopic.one (Python Community
2024b).
There are several classes of engineering analysis performed with engineering

computing. The following list captures the majority of problems, but it is far from
exhaustive.

Numerical Analysis Many engineering problems can be approached by perform-
ing numerical calculations. These can be challenging or even intractable to
performmanuallywhen the problem requiresmany such calculations.Numer-

ical analysis use systematic procedures called algorithms to perform the
calculations with a computer. These techniques use the computer to perform,
store, and organize these calculations. This class of problems, sometimes
called simulation, comprise the majority of engineering computing problems.

Symbolic Analysis Symbolic analysis, sometimes called “analytic” as opposed to
“numerical,” is closely related to mathematics. Mathematical variables can
be directly manipulated via algebraic methods (including those of calculus).
Computer programs that treat these variables symbolically are called com-

puter algebra systems (CASs). Although these systems can be somewhat
cumbersome, for complex problems they provide distinct advantages.

Graphical Analysis Visualization techniques are an important aspect of engineer-
ing analysis. Graphics—often graphs, plots, and charts—can be generated
by programs much more quickly and accurately than they can be created
manually. The result of an engineering computing program is often a graphic.

In this book, we will introduce all three classes of analysis.

1.2 The Development System LINK
89

D1In general, a computerdevelopment system is one that is used towrite,
execute, debug, and deploy computer programs. Our development
system is comprised of the following components:

• A personal computer (PC) (e.g., one running the Windows, macOS, or Linux
operating system)
• The Anaconda distribution of the Python 3 software
• The Spyder integrated development environment (IDE)

An IDE is a software application in which a programmer can write, execute, and
debug their programs.

https://engineering-computing.ricopic.one
https://engineering-computing.ricopic.one/89
https://engineering-computing.ricopic.one/89
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On your PC, set up your development system with the following steps:

1. Download the Anaconda distribution of the Python software from the follow-
ing URL:
www.anaconda.com/download
Open the installer and follow the instructions for installation.

2. Download and install the Spyder IDE from the following URL:
www.spyder-ide.org
Open the installer and follow the instructions for installation.

1.2.1 The Anaconda Distribution of Python

Anaconda provides a way of managing multiple Python environments; a Python
environment is a specific version of Python with a set of packages. For a given
project, it is best practice to maintain a separate environment; this allows us to
specify a Python version and set of packages required to run the programs in the
project. Anaconda provides a framework in which we can create an environment,
called a conda environment.
We will use the default base environment. To create your own environments

or add packages, see the instructions in the Anaconda documentation:
LINK
0E

https://engineering-computing.ricopic.one/0e.

1.2.2 Hello World and the Spyder IDE

When it is first loaded, the Spyder IDE looks something like what is
shown in figure 1.1.

www.anaconda.com/download
www.spyder-ide.org
https://engineering-computing.ricopic.one/0e
https://engineering-computing.ricopic.one/0e
https://engineering-computing.ricopic.one/0e
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Figure 1.1. The Spyder IDE when it first loads

The left pane is the code editor. It has a default Python file, which convention-
ally has extension .py, already queued up. Create a new Python file by selecting
the menu item File New file… . Save this file ( File Save ) as hello_world.py in a
dedicated directory.1

The hello_world.py file already contains a triple-quoted string with basic
information about the file. Below the ending quotes, add the following statement:

print("Hello World!")

Save the file and run it with the menu selection Run Run or the key F5 .
The console pane on the lower right shows the result of the execution of the file,

which is the output

Hello World!

Now let’s edit the program as follows:

1. In programming, file names should not include spaces, periods (other than for the extension), or most
special characters. As a word separator, the hypen - is usually fine, but the underscore _ is topically
safer. For Python files, the underscore is preferable.
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greeting = "Hello World!"
print(greeting)

This should yield the same result in the console. In the upper-right pane, select the
Variable Explorer tab. This shows variable names, types, and values in the current
kernel. A kernel is a computing process that runs programs. In most environments,
when a program runs, a kernel is created at the start and destroyed at the end of
execution. However, Spyder maintains the same kernel between runs. This is con-
venient for debugging purposes. For instance, we can interact with the program(s)
run in the current kernel by entering commands in the console; try entering

greeting

This will return the value of the variable greeting. The console is a convenient
place to try out statements as we work on our program. For instance, we may want
to append some text to the greeting string. In the console, try

greeting + "It's a beautiful day"

This returns, Hello World!It's a beautiful day, which is close but not quite
what we wanted. We should add a space character to the beginning of our
addendum. So, trying it out in the console allowed us to quickly debug our code.
The persistent kernel can also cause problems. Sometimes we may want to create

a new kernel by selecting the menu item Consoles Restart kernel , which clears all
variables and unloads any packages. Similarly, to clear all variables in the kernel,
we can execute the consolemagic command

%reset

We will be asked to confirm, which we can do by entering y.

1.2.3 Configuring the Spyder IDE for Anaconda

In section 1.2.2, we used the Python distribution that Spyder has built in. We here
configure Spyder to use the Anaconda distribution installed in section 1.2.1. First,
we must install the spyder-kernels package in the base Anaconda environment.
On a Windows PC, open the Anaconda Prompt application; on MacOS or Linux,
open the Terminal application. To ensure you have activated the base environment,
enter the following prompt:

conda activate base

Now install the spyder-kernels package with the command

conda install spyder-kernels
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Enter y if prompted. After successful installation, conda list should display the
packages installed in the base environment, including spyder-kernels. Finally,
enter the command

which python

Copy or record the returned path.
In Spyder, open preferences with Ctrl + , . Navigate to the tab Python Interpreter

and check Use the following Python interpreter . Either paste the path copied above in the
text field or click the Select file button, then navigate to the path in question, selecting
the python program. Click OK to complete the configuration.
You may need to restart Spyder for the changes to take effect.

1.3 Basic Elements of a Program LINK
C0

Every programming language has a syntax: rules that describe the
structure of valid combinations of characters and words in a program.
When one first begins writing in a programming language, it is common to generate
syntax errors, improper combinations of characters andwords. Every programming
language also has a semantics: a meaning associated with a syntactically valid
program. A program’s semantics describe what a program does.
In Python and in other programming languages, programs are composed of a

sequence of smaller elements called statements. Statements do something, like per-
form a calculation or store a value in memory. For instance, x = 3*5 is a statement
that computes a product and stores the result under the variable name x. Many
statements contain expressions, each of which produces a value. For instance, 3*5
in the previous statement is an expression that produces the value 15.
An expression contains smaller elements called operands and operators. Com-

mon operands include identifiers—names like variables, functions, and modules
that refer to objects—and literals—notations for constant values of a built-in type.
For instance, in the previous expression x is a variable identifier and 3 and 5 are
literals that evaluate to objects of the built-in integer class. The * character in
the previous expression is the multiplication operator. Python includes operators
for arithmetic (e.g., +), assignment (e.g., =), comparison (e.g., >), logic (e.g., or),
identification (e.g., is), membership (e.g., in), and other operations.

Example 1.1

Create a Python program that computes the following arithmetic expressions:

G = 4069 · 0.002, H = 100/1.5, and I = (−3)2 + 15− 3.01 · 10.

Multiply these together (GHI) and print the product, along with G, H, and I to
the console.

https://engineering-computing.ricopic.one/c0
https://engineering-computing.ricopic.one/c0
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Consider the following program:

x = 4096*0.002 # float multiplication
y = 100/1.5 # float division
z = (-3)**2 + 15 - 3.01*10 # exponent operator **
print(x,y,z)
print(x*y*z)

The console should print

8.192 66.66666666666667 -6.099999999999998
-3331.413333333333

Note that althoughwehavemultiplied anddivided integer literals (4096 and 100)
by floating-point literals (0.002 and 1.5), Python has automatically assumed
we would like floating-point multiplication and division.
We used the exponent operator **, which may have been unfamiliar. If you

tried the more common character ^ for the exponent, you received the error

TypeError: unsupported operand type(s) for ^: 'int' and 'float'

In Python, the ^ is the bitwise logical XOR operator.

1.3.1 Classes, Objects, and Methods

Everything that is expressed in a Python statement is an object, and every object is
an instance of a class. For instance, 7 is a literal that evaluates to an object that is an
instance of the integer class. Similarly, "foo" is a literal that evaluates to an object
that is an instance of the string class. A class can be thought of as a definition of
the kind of objects that belong to it, how they are structured, and the kinds of things
that can be done with it.
Python includes built-in classes such as the numeric integer, floating-point

number, and complex number. It is common to refer to a class, especially a built-in
class, as a type.
Classes are more than types of data, however. Classes can include one or more

method, which is a kind of function that operates on inputs called arguments

and returns outputs. Something special about methods is that they can operate on
instances of the class. For example,

3.5.as_integer_ratio()

The literal 3.5 yields an instance of the float class, which has method
as_integer_ratio(). Placing the . character before themethod name is the syntax
to apply the object’s as_integer_ratio()method. This method returns a tuple
object with the form (<numerator>, <denominator>), where <numerator> and
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<denominator> denote the numerator and denominator of the integer ratio
corresponding to the floating-point number. The expression yields the output

(7, 2)

which signifies the fraction 7/2.
We can and often do create our own classes with their own methods. We will

return to this topic in a later chapter.

Example 1.2

Create a Python program that starts with the three word strings "veni", "vedi",
"vici" and concatenates and prints them with the following caveats:

• Between each word string, insert a comma and a space.
• Capitalize each word string using the capitalize()method.

Consider the following program:

w1 = "veni"
w2 = "vedi"
w3 = "vici"
print(w1.capitalize() + ", " +

w2.capitalize() + ", " +
w3.capitalize()

)

The console should print

Veni, Vedi, Vici

Note that we have used linebreaks to improve code readability. Python syntax
allows expressions enclosed in parentheses to be broken after operators.

1.3.2 Basic Built-In Types

Python has several built-in types (classes) that provide a foundation from which
many of our programs can be written. We have seen some examples of these types
already, and in this section they will be described in greater detail.

1.3.2.1 Boolean The simple bool (i.e., Boolean) type can have one of two values,
True or False. This type is used extensively for logical reasoning in programs, and
will be especially important for branching (see section 1.8). Expressions containing
the Boolean operators not, and, and or evaluate to Boolean values. For instance,
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not True # => False
not False # => True
True and False # => False
True or False # => True

Similarly, expressions with the comparison operators == (equality), != (inequal-
ity), < (less than), > (greater than), <= (less than or equal), >= (greater than or equal),
is (identity), is not (nonidentity), and in (membership). evaluate to Boolean val-
ues. A truth table for the Boolean operators and some comparison operators is
given in table 1.1.

Table 1.1. Boolean and comparison operators on Boolean and integer inputs x and y

x y bool(x) not x x and y x or y x==y x!=y x<y x<=y x>=y x>y

False False False True False False True False False True True False
False True False True False True False True True True False False
True False True False False True False True False False True True
True True True False True True True False False True True False
0 0 False True 0 0 True False False True True False
0 1 False True 0 1 False True True True False False
1 0 True False 0 1 False True False False True True
1 1 True False 1 1 True False False True True False

Note that non-Boolean inputs can be given to the Boolean operators. Non-Boolean
objects can be given Boolean values with the bool() function, included in the table.
For instance, bool(0) and bool(0.0) evaluate to False; conversely, bool(1) and
bool(1.0) evaluate to True. In fact, for all numeric types (i.e., int, float, and
complex), every value evaluates to True except those equivalent to 0.

1.3.2.2 Integer The int (i.e., integer) type can be used to represent the mathemat-
ical integers, positive and negative (and 0). As we have already seen, several built-in
operators can be applied to integer inputs, including + (summation), - (difference),
* (product), and / (quotient). More operators will be introduced in later chapters.
The built-in int() function returns an integer representation of its input, which

can be either a number, a string, or empty, in which case int() returns 0. Although
it does not round in the most elegant manner, int() can be used to convert a
floating-point number to an integer, as in

int(3.2) # => 3
int(3.9) # => 3
int(-3.9) # => -3

We see that int() rounds toward zero.
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1.3.2.3 Floating-Point Number Like scientific notation, floating-point numbers

represent potentially very large or very small numbers in a compact form. This
form has three parts: a sign B, a significand G, and an exponent =. These combine
as

B × G × 2= .

Floating-point numbers can be represented with the Python float type and
are often used to represent decimal numbers, such as 1.4 and −0.33. The built-in
float() function returns a float from a number or string argument. For instance,

float(5) # => 5.0
float("5") # => 5.0

Floating-point numbers can be entered with scientific notation via the letter e, as
in the following examples:

291e-6 # => 0.000291
1e3 # => 1000.0

1.3.2.4 Complex Number Complex numbers, which have a real part 0 and
imaginary part 1, represented mathematically as

0 + 91,
where 9 is the imaginary number

√
−1, can be represented in Python with the

complex type. For numbers a and b, we can construct a complex type with
complex(a, b). For instance,
complex(1, 2) # => (1+2j)

A complex object has attributes real and imag that return the real and imaginary
parts, respectively. For instance,

s = complex(3, -5)
s.real # => 3
s.imag # => -5

1.3.2.5 String Strings are series of characters and have built-in Python type str.
String literals can be written with either single quotes (e.g., 'foo') or double
quotes (e.g., "bar"). Within one variety, the other is treated as a regular quote,
as in "A 'friend' wants to know" and 'I am "big boned"'. It is generally
recommeneded to use just one variety or the other for string literals in a given
project (mixing the two is seen as bad form).
The str() function returns a string representation of the object it is given as

input. For instance, str(4) returns "4" and str(True) returns "True". This is
especially helpful when joining strings as in the following example:
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x = 3.14159
print("x = " + str(x) + " m")

A convenient way to construct nice strings is the formatted string (f-string)

literals. A simple f-string that has the same value as what is printed in the example
above is f"x = {x} m". Executable expressions are inserted in braces {} within
the f-string. Note that the str() function is automatically called, which makes for
a nicer syntax.
A format specifier can also be applied to expressions in an f-string. These have

the general form

:[[fill]align][sign][z][#][0][width][group][.prec][type]

Each of these terms is described in table 1.2 and table 1.3. In the example above, we
could format the printing of x in fixed-point format (f) with a precision (.prec) of
3 decimal places with

print(f"x = {x:.3f} m") # => x = 3.142

In the following example, we use scientific notation (e) with precision (.prec) of 4:

x = 0.00123
print(f"x = {x:.4e} m") # => x = 1.2300e-03 m

Note that the number of significant digits is 1 greater than the precision in this
format. In the following example, we use binary (b) with 0-padding:

x = 3
print(f"x = {x:04b} (in binary)") # => x = 0011 (in binary)

Table 1.2. Format specifier terms.

Term Values (if any) Default Effect

: Separates the format specifier from the
expression

fill Any character space Character to pad with when value doesn’t
use the entire field width

align < (left) | > (right) | ^ (center)
| =

< How to justify when value doesn’t occupy
the entire field width

sign + (explicit +) | - (no plus) |
space (space but no plus)

- How a sign appears for numeric values

z z Coerces -0.0 to 0.0
# # Use the alternate output form for numeric

values
0 0 Pad on the left with zeros instead of

spaces
width Positive integers Minimum width of (number of characters

in) the field
group , | _ Grouping character (thousands separator)

for numeric output
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Term Values (if any) Default Effect

.prec Nonnegative integers varies with type Digits after the decimal point for
floating-points, maximum width for
strings

type See table 1.3 s (strings) or d
(numbers)

Specifies the presentation type, which is
the type of conversion performed on the
corresponding argument

Table 1.3. Format specifier types.

Input Class Format Type Meaning

String s String
String None String (same as s)
Integer b Binary
Integer c Character
Integer d Decimal integer
Integer o Octal
Integer x or X Hex (lowercase or uppercase)
Integer n Local decimal number (similar to d)
Integer None Same as d
Floating-point e or E Scientific notation (lowercase or uppercase)
Floating-point f or F Fixed-point notation (lowercase or uppercase)
Floating-point g or G General format (lowercase or uppercase)
Floating-point n Local general format
Floating-point % Percentage
Floating-point None Same as g

The str class has several methods. We have already seen the capitalize()
method applied in section 2.3.2. Table 1.4 describes several frequently used string
methods.

Table 1.4. Some particularly useful string methods.

Method Description

capitalize() Convert the first character to uppercase
count() Return the count of the specified value occurrences
endswith() If the string ends with the specified value, return True
find() Return the position where the specified value is found
index() Return the position where the specified value is found
isalpha() If all characters are alphabetic, return True
isdecimal() If all characters are decimals, return True
isdigit() If all characters are digits, return True
isnumeric() If all characters are numeric, return True
join() Convert iterable elements into a single string
lower() Convert the string to lowercase
replace() Return a string with the specified value replaced
rindex() Return the last position where the specified value is found
rsplit() Split at the specified separator, return a list
split() Split at the specified separator, return a list
splitlines() Split at line breaks, return a list
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Method Description

startswith() If the string starts with the specified value, return True
strip() Return a trimmed version of the string

1.3.3 Iterable Objects and Dictionaries

In Python, an iterable object is one that contains a collection of elements and
defines, for each element, which element is next. In the following sections, we will
consider some built-in iterable classes (types).

Box 1.1 Further Reading

• Python Community (2024a; § The Python Tutorial: 9 Classes), on classes,
objects, and methods
• Python Community (2024a; § Python Standard Library: Built-in Types), on the
basic built-in types

1.4 Lists LINK
KX

The list class defines an ordered set of elements. These elements can
be of any class, and do not need to match within a list. Lists can be
nested to create a list of lists. The basic syntax for creating a list of elements eG is
[e1, e2, ..., en]. Consider the following list assignments:

int_list = [3, 9, 3, -4, 0] # Duplication allowed
str_list = ["foo", "bar", "baz"]
com_list = [int_list, str_list] # List of lists
mix_list = [8.41, "foo", [7]] # Mixing element types

1.4.1 Accessing List Elements

Because the elements of a list have an order, they can be referred to via an index, a
mapping of integers to elements. In Python, the first element in the list has index
0 and subsequent elements have indices of increasing values, 1, 2, 3, and so on.
The syntax for accessing the element with index i of a list l is l[i]. For instance,
elements from the previously defined lists can be accessed as follows:

int_list[0] # => 3
int_list[3] # => -4
str_list[2] # => "baz"
mix_list[2] # => [7]

Negative indices are used to access elements from the end of a list. For instance,
for int_list above,

https://engineering-computing.ricopic.one/kx
https://engineering-computing.ricopic.one/kx
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int_list[-1] # => 0
int_list[-2] # => -4

This is particularly useful when we want to access the last element of a list, which
we see has index -1.
A selection of elements from a list can be accessed via slicing, which has the

syntax l[start:stop] or l[start:stop:step]. For instance,

l = [0, 1, 2, 3, 4]
l[0:3] # => [0, 1, 2]
l[2:4] # => [2, 3]
l[0:-1] # => [0, 1, 2, 3] (no last item!)
l[0:] # => [0, 1, 2, 3, 4]
l[0::2] # => [0, 2, 4] (every two elements)

It is important to note that the slice does not include the stop index; rather, the
slice’s last value is from index stop-1. As we see in the third slice example, this
means the normal syntax for slicing through the final element (i.e., the element with
index -1) does not include that element. To include the final element, leave off an
index for stop, as shown in the fourth and fifth examples.

1.4.2 Mutability

Lists aremutable; that is, they can bemutated (changed). This is unlikemost built-in
types, which are immutable and cannot be changed. The mutability for frequently
used built-in types is shown in table 1.5.

Table 1.5. Mutability of commonly used built-in types.

Data Type Built-in Class Mutability

Numbers int, float, complex Immutable
Strings str Immutable
Tuples tuple Immutable
Booleans bool Immutable
Lists list Mutable
Dictionaries dict Mutable
Sets set Mutable

Themutability of lists allows us to change their elements. The syntax for assigning
a new value v to an element with index i of a list l is l[i] = v. For instance,
l = ["Hello", "World", "!"]
l[1] = "Stranger"
print(l)

returns

['Hello', 'Stranger', '!']



Introduction 15

Note that although strings are immutable, a list of strings is mutable. This means
"Stranger" is not at the same location in memory as was "World".

1.4.3 Methods

Lists have several methods for mutating themselves, which are given in table 1.6.

Table 1.6. Commonly used list methods for a list l.

Method Description

l.append(item) Append item to the end of l
l.clear() Remove all items from l
l.extend(iterable) Concatenate l with the contents of iterable
l.index(x[, start[, end]]) Return the index of the first instance of x in l[start:end]
l.insert(index, item) Insert item into l at index
l.pop(index) Return and remove the item at index
l.pop() Return and remove the last item
l.remove(item) Remove item’s first occurrence
l.reverse() Reverse the items of l
l.sort(key=None, reverse=False) Sort the items of l

For example, an element can be inserted into a list as follows:

l = ["zero", "one", "three"]
l.insert(2, "two")
print(l)

which returns

['zero', 'one', 'two', 'three']

When using most list methods, we often do not assign the returned value from
the expression. This is because most of these expressions return a value of None.
For instance, from the previous example,

print(l.insert(2, "two"))

returns

None

Such methods are simply operating on the original list object and do not return that
object. This is a common idiom in Python programming, and many mutable classes
behave similarly.

Example 1.3

Write a program that removes the second occurrence of the element 3 from the
following list:

l = [1, 2, 3, 0, 3, 4, 3]
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The remove()method might seem promising, but it only removes the first occur-
rence of the element. Instead, let’s identify the index of the second occurrence.
The index(x[, start[, end]])method allows us to identify the index of the
first occurrence or the first occurrence between start and end. So our strategy
is to find the index i_first of the first occurrence with index(), then narrow
our search to the rest of the list after i_first to the end of the list, identifying
the second index i_second. Finally, we can remove the element at i_second
with the popmethod.
The following program implements this strategy.

l = [1, 2, 3, 0, 3, 4, 3]
x = 3 # element we are removing
i_first = l.index(x) # first occurrence index
i_second = l.index(x, i_first+1) # second occurrence index
l.pop(i_second) # removes second occurrence
print(f"l without second {x}: {l}")

This prints

l without second 3: [1, 2, 3, 0, 4, 3]

1.5 Tuples and Ranges LINK
RQ

Python has a built-in tuple class tuple is very similar to a list in
that it is an ordered collection of elements. The term “tuple” is a
generalization of the terms “single,” “double,” “triple,” “quadruple,” and so on.
The primary difference between a tuple and a list is that a tuple is immutable,
so its elements can’t be changed. The syntax for a tuple literal of elements eG is
(e1, e2, ..., en). The elements can each be of any type, including tuples. For
example, the following statements return tuples:

(0, 1, 2, 4, 5)
("foo", "bar", "baz")
([0, 1], [2, 3])
((0, 1), (2, 3))
(0, "foo", [1, 2], (3, 4))

Elements of a tuple can be accessed via the same syntax as is used for lists,
including slicing. For instance,

t = (0, 1, 2)
t[1] # => 1
t[0:2] # => (0, 1)
t[1:] # => (1, 2)

https://engineering-computing.ricopic.one/rq
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Because tuples are immutable, there are only two built-in tuplemethods, count()
and index(). The count()method returns the number of times its argument occurs
in the tuple. For instance,

t = (-7, 0, 7, -7, 0, 0)
t.count(-7) # => 2

The index()method returns the index of the first occurrence of its argument. For
instance,

t = ("foo", "bar", "baz", "foo", "bar", "baz", "baz")
t.index("baz") # => 2

The range built-in type is a compact way or representing sequences of integers.
A range can be constructed with the range(start, stop, step) constructor
function, as in the following examples:

list(range(0, 3, 1)) # => [0, 1, 2]
list(range(2, 6, 1)) # => [2, 3, 4, 5]
list(range(0, 3)) # => [0, 1, 2] (step=1 by default)
list(range(3)) # => [0, 1, 2] (start=0 by default)

Note that we have wrapped the ranges in list() functions, which converted
each range to a list. This was only so we can see the values it represents; alone, an
expression like range(0, 3) returns itself. This is why a range is such a compact
data point—all that needs to be stored in memory are the start, stop, and step
arguments because the intermediate values are implicit.

1.6 Dictionaries LINK
OW

The built-in Python dictionary class dict is an unordered collection
of elements, each of which has a unique key and a value. A key
can be any immutable object, but a string is most common. A value can be any
object. The basic syntax to create a dict object with keys kG and values vG is
{k1: v1, k2: v2, ...}. For instance, we can define a dict as follows:
d = {"foo": 5, "bar": 1, "baz": -3}

Accessing a value requires its key. To access a value in dictionary dwith key k,
use the syntax d[k]. For example,

https://engineering-computing.ricopic.one/ow
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d = { # It is often useful to break lines at each key-value pair
"name": "Spiff",
"age": 33,
"occupation": "spaceman",
"enemies": ["Zorgs", "Zargs", "Zogs"]

}
print(f"{d['name']} is a {d['age']} year old"

f"{d['occupation']} who fights {d['enemies'][0]}.")

This returns

Spiff is a 33 year old spaceman who fights Zorgs.

A value v with key k can be added to an existing dictionary d with the syntax
d[k] = v. For instance, (Filik et al. 2019)
d = {} # Empty dictionary
d["irony"] = "The use of a word to mean its opposite."
d["sarcasm"] = "Irony intended to criticize."

Dictionaries are mutable; therefore, we can change their contents, as in the
following example:

d = {}
d["age"] = 33 # d is {"age": 33}
d["age"] = 31 # d is {"age": 31}

Dictionaries have several handy methods; these are listed in table 1.7.

Table 1.7. Dictionary instance methods for dictionary instance d and class method for
class dict.

Methods Descriptions

d.clear() Clears all items from d
d.copy() Returns a shallow copy of d
dict.fromkeys(s[, v])Returns a new dict with keys from sequence s, each with optional value v
d.get(k) Returns the value for key k in d
d.items() Returns a view object of key-value pairs in d
d.keys() Returns a view object of keys in d
d.pop(k) Removes and returns the value for key k in d
d.popitem() Removes and returns the last-inserted key-value pair from d
d.setdefault(k, v) Returns the value for the key k in d; inserts v if absent
d.update(d_) Updates d with key-value pairs from another dictionary d_
d.values() Returns a view object of values in d

Note that most of these methods apply to dictionary instance d, either mutating
d or returning something from d. However, the fromkeys()method is called from
the class dict because it has nothing to do with an instance. Such methods are
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called class methods; the other methods we’ve considered thus far are instance
methods.
Dictionary view objects—returned by items(), keys(), and values()—are

dynamically updating objects that change with their dictionary. For instance,

d = {"a": 1, "b": 2}
d_keys = d.keys()
print(f"View object before: {d_keys}")
d["c"] = 3
print(f"View object after: {d_keys}")

This returns

View object before: dict_keys(['a', 'b'])
View object after: dict_keys(['a', 'b', 'c'])

View objects can be converted to lists with the list() function, as in list(d_keys).

Example 1.4

Write a program that meets the following requirements:

1. It defines a list of strings names = ["Mo", "Jo", "Flo"]
2. It constructs a dict instance datawith keys from the list names
3. It creates and populates a sub-dict with the follow properties for each

name:

a. Mo—year: sophomore, major: Mechanical Engineering, GPA: 3.44
b. Jo—year: junior, major: Computer Science, GPA: 3.96
c. Flo—year: sophomore, major: Philosophy, GPA: 3.12

4. It prints each of the students’ name and year
5. It replaces Jo’s GPA with 3.98 and prints this new value
6. It removes the entry for Mo and prints a list of remaining keys in data

The following program meets the given requirements:
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names = ["Mo", "Jo", "Flo"]
data = dict.fromkeys(names) # => {"Mo": None, "Jo": None, "Flo": None}

#%% Populate Data
data["Mo"] = {}
data["Mo"]["year"] = "sophomore"
data["Mo"]["major"] = "Mechanical Engineering"
data["Mo"]["GPA"] = 3.44
data["Jo"] = {}
data["Jo"]["year"] = "junior"
data["Jo"]["major"] = "Computer Science"
data["Jo"]["GPA"] = 3.96
data["Flo"] = {}
data["Flo"]["year"] = "sophomore"
data["Flo"]["major"] = "Philosophy"
data["Flo"]["GPA"] = 3.12

#%% Data Operations and Printing
print(f"Mo is a {data['Mo']['year']}. "

f"Jo is a {data['Jo']['year']}. "
f"Flo is a {data['Flo']['year']}.")

data["Jo"]["GPA"] = 3.98
print(f"Jo's new GPA is {data['Jo']['GPA']}")
data.pop("Mo")
print(f"Names sans Mo: {list(data.keys())}")

This prints the following in the console:

Mo is a sophomore. Jo is a junior. Flo is a sophomore.
Jo's new GPA is 3.98
Names sans Mo: ['Jo', 'Flo']
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1.7 Functions LINK
V3

In Python, functions are reusable blocks of code that accept input
arguments and return one or more values. As we have seen, a method
is a special type of function that is contained within an object. We typically do not
refer to methods as “functions,” instead reserving the term for functions that are
not methods. A function that computes the square root of the sum of the squares of
two arguments can be defined as:

def root_sum_squared(arg1, arg2):
sum_squared = arg1**2 + arg2**2
return sum_squared**(1/2)

The syntax requires the block of code following the def line to be indented. A
block ends where the indent ends. The indent should, by convention, be 4 space
characters. The function ends with a return statement, which begins with the
keyword return followed by an expression, the value of which is returned to the
caller code. The variable sum_squared is created inside the function, so it is local
to the function and cannot be accessed from outside. Calling (using) this function
could look like

root_sum_squared(3, 4)

This call returns the value 5.0.
The arguments arg1 and arg2 in the previous example are called positional

arguments because they are identified in the function call by their position; that
is, 3 is identified as arg1 and 4 is identified as arg2 based on their positions in
the argument list. There is another type of argument, called a keyword argument

(sometimes called a “named” argument), that can follow positional arguments and
have the syntax <key>=<value>. For instance, we could augment the previous
function as follows:

def root_sum_squared(arg1, arg2, pre="RSS ="):
sum_squared = arg1**2 + arg2**2
rss = sum_squared**(1/2)
print(pre, rss)
return rss

The pre positional argument is given a default value of "RSS =", and the function
now prints the root sum square with pre prepended. Calling this function with

sum_squared(4, 6)

prints the following to the console:

RSS = 7.211102550927978

Alternatively, we could pass a value to prewith the call

https://engineering-computing.ricopic.one/v3
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sum_squared(4, 6, pre="Root sum square =")

which prints

Root sum square = 7.211102550927978

1.8 Branching LINK
CL

There are special statements in all programming languages that allow
the programmer to control which portions are to be executed next (or
at all); that is, the control flow. The primary forms of control flow statements are
branching and looping, and we introduce branching in this section and looping in
section 1.9.

1.8.1 Branching with if/elif/else Statements

Branching control flow statements are based on logical conditions that are tested by
the statement. The primary branching statements in Python are the if/elif/else
statements. For instance, consider the following statements:

if x < 0:
print("negative")

elif x == 0:
print("zero")

else:
print("positive")

If x is less than 0, it will print negative; if x is equal to 0, it will print zero, and
otherwise (when x is positive) it will print positive. Note that the blocks of code
that follow the branching statements must be indented. The elif (i.e., else if) and
else statements are optional, and there can be multiple elif statements. Once
a condition is met and the corresponding block executed, the rest of the control
statements in the block are skipped.
The conditional expression is evaluated to a bool type (class). A boolean object

can have one of two possible values, True and False. If the conditional expression of
a branching statement evaluates to True, its corresponding block of code is executed.
Note that Python will evaluate non-boolean conditional expression value with the
built-in bool() function. For instance, if the conditional expression evaluates to a
string "foo", it will be evaluated as bool("foo"), which, like all nonempty strings,
evaluates to True. However, an empty string "" evaluates to False.

https://engineering-computing.ricopic.one/cl
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Example 1.5

Write and test a Python program that prints a string variable if it is nonempty,
and prints Empty string otherwise.

We will want to test our program on a nonempty and an empty string, so we will
want to reuse our code; this indicates the use of a function definition. Consider
the following program:

def print_nonempty(s):
if s:

print(s)
else:

print("Empty string")

print_nonempty("This should print")
print_nonempty("") # This should print "Empty string"

The if statement has conditional expression s, which should be a string. There-
fore, if it is nonempty, print(s)will evaluate. Otherwise (i.e., if s is an empty
string), the statement print("Empty string")will evaluate. As we expect, the
program prints the following to the console:

This should print
Empty string

1.8.2 Branching with match/case Statements

In Python 3.10, a new kind of branching statement was introduced: match/case.
Its use is never strictly necessary, but it can make a program more readable. For
example,

if s == "red":
print("red")

elif s == "blue":
print("blue")

else:
print("other")

can be written alternatively as

match s:
case "red":

print("red")
case "blue":

print("blue")
case _:

print("other")
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In the third case _matches when there is no other match. Once there is a match, no
other cases are tested. If there is no match (and _ is not given as a case), none of the
code blocks are evaluated.
There are more advanced uses of match/case statements in which patterns can

be matched. See Python Community (2024a; § 4.6) for more details.

1.8.3 Branching with try/except/finally Statements

Sometimes a statement can yield an exception, which is not a syntax error, but has
a similar effect in that it can stop the execution of the program. Common exceptions
include ZeroDivisionError, NameError and TypeError.
In general, an exception stops the execution of a program; however, certain

exceptions can be anticipated and dealt with accordingly, which is called excep-
tion handling. One of the primary ways to handle exceptions is to use the
try/except/finally statements. We can think of these statements as branch-
ing statements that branch based on exceptions. For instance consider the following
function definition:

def plus_7(x):
try:

y = x + 7
except:

y = x
return y

If we can add 7 to x, which is the case when x is a number, the try statement will
execute, the except statement will be skipped, and the sum will be returned. If,
however, we cannot add 7 to x, which is the case when x is nonnumeric, the try
statement will raise an exception, so the except statement will be executed; this
returns the input without change.
We will later return to exception handling to consider more advanced usage,

including the finally statement.
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1.9 Looping LINK
IX

Repeating blocks of code by calling a function more than once, as in
example 1.5, can get cumbersome when it needs to be repeated many
times. A loop repeats a block until some stopping condition is met. One type of
loop in Python is a while loop, which repeats a block of code while its conditional
expression evaluates to True. For instance,

n = 0 # Initialize n
while n < 5:

print(n)
n += 1 # Increment n (i.e., n = n + 1)

The loop evaluates the conditional expression n < 5 and, if in fact n < 5, executes
the block of code. After the block finishes, the test is repeated and potentially the
block of code. Thiswill repeat indefinitely, until the conditional expression evaluates
to False, in which case the loop exits and execution resumes after the code block.
The block will be executed 5 times, printing 0 through 4 to the console.
Another type of Python loop is a for loop, which has no explicit conditional

expression, instead iterating through an iterable object like a list, , until it reaches
the end. For example,

l = ["foo", "bar", "baz"]
for s in l:

print(f"Say {s}")

This prints

Say foo
Say bar
Say baz

It is common to loop through a rangewith a for loop, as in the following:

for k in range(2, 8):
print(k, end=" ") # Prints on the same line

This prints the following to the console:

2 3 4 5 6 7

Often, a loop index is required inside a for loop. The syntax for this requires an
identifier for the index and an enumerate type object to be iterated through. The
constructor function enumerate() assigns an index to each element of its iterable
argument (e.g., a list). For instance,

https://engineering-computing.ricopic.one/ix
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names = ["Manny", "Bella", "Amadeus"]
signs = ["Libra", "Virgo", "Sagittarius"]
for i, name in enumerate(names):

print(f"{name} is a {signs[i]}")

This prints the following to the console:

Manny is a Libra
Bella is a Virgo
Amadeus is a Sagittarius

Looping through a dictionary is similar, butwe need the items() of the dictionary
for the key-value pair, as follows:

sounds = {"dog": "woof", "cat": "meow", "fox": "ring-ding-ding"}
for k, v in sounds.items():

print(f"The {k} says '{v}'")

This prints the following to the console:

The dog says 'woof'
The cat says 'meow'
The fox says 'ring-ding-ding'
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1.10 Problems LINK
6E

Problem 1.1 LINKBA Write a program with the following requirements:

a. It defines variables for the following quantities:

G = 5.2+ 93.4, H =−17, and I = 0.02,

where 9 is the imaginary number
√
−1.

b. It computes and prints the following quantities:

G + H, GHI, and 4G3 − 8GH + 6H2.

c. It further computes and prints the following quantities:

|G |, GH, and <(G),
where | · | is the absolute value, · is the complex conjugate, and<(·) is the
real part.

Problem 1.2 LINKSB Write a program with the following requirements:

a. It defines a variable for a list with the following elements:

4, -12, 6, -14, 8, -16

b. It prints the first and last elements of the list
c. Using list slicing, it prints the first three elements of the list
d. Using list slicing, it prints the last three elements of the list
e. Using list slicing, it prints every other element, starting with the first element
f. It computes and prints the length of the list (consider using the built-in

function len())
g. It computes and prints the sumof the list elements (consider using the built-in

function sum())

Problem 1.3 LINKI2 Write a program with the following requirements:

a. It defines a variable for a list with the following elements:

32, 41, 58, 34, 24, 53, 46, 41

b. It computes and prints the mean of the list items (consider using the built-in
sum() and len() functions)

c. It finds and prints the maximum and minimum values in the list (consider
using the built-in max() and min() functions)

https://engineering-computing.ricopic.one/6e
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d. It finds and prints the indices of the maximum and minimum values in the
list (consider using the index()method)

e. It sorts and prints the sorted list (minimum to maximum; consider using the
sort()method)

Problem 1.4 LINKVZ Write a program with the following requirements:

a. It defines a function which_number() that takes a single argument and, if it
is an int, float, or complex object, returns the strings "int", "float", or
"complex". If the argument is not a number, it returns None.

b. It tests the function and prints its return value on the following inputs:

i. 42
ii. 3.92
iii. complex(2, -3)
iv. "3.92"
v. [2, 0]

Problem 1.5 LINKX4 Write a function capital_only(l) with the following require-
ments:

a. It accepts as input a list l
b. It checks that all elements are strings; it raises an exception, otherwise, with

raise ValueError(
"All elements must be strings"

)

c. It returns a list (not the same list2) with only the strings that begin with a
capital letter

d. It returns the proper output for the following inputs (demonstrate this in the
program):

i. ["Foo", "Bar", "Baz"]
ii. ["Foo", "bar", "Baz"]
iii. ["Foo", 0, 1, "Bar", 2]

Problem 1.6 LINKX0 Write a program with the following requirements:

a. It defines a function float_list() that takes a single list argument and
returns a new list with all elements converted to floats

b. If the input is not a list, it returns an empty list
c. If an element is an int, it should be converted to a float
d. If an element is a string, the program should attempt to convert it to a float

2. Because a list is mutable, we must take care not to mutate a list inside a function (except in rare cases
when this behavior is desired).

https://engineering-computing.ricopic.one/vz
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i. For strings like "3.24", the float() function will work
ii. For strings like "foo", the float() functionwill throw a ValueError;

consider using try and except statements
e. If an element cannot be converted to a float, it should be left out of the

returned list
f. If an element is complex, it should remain so
g. Test and print the returned list for the following inputs:

i. [1.1, 0.2, 4.2, -30.2]
ii. [3, 42, -32, 0, 3]
iii. [1-3j, 2, 0.3]
iv. ["1.2", "8", "-3.9"]
v. ["0.4", "dog", None, 8]
vi. 3.4





2 The Structure, Style, and Design of Programs LINK
XQ

With the development environment and basic elements of a Python program
described in chapter 1, we can write a great many interesting programs. In this
chapter, we consider how these programs should be structured and styled.

2.1 Python Interpreters and Interactive Sessions LINK
RZ

When we execute (i.e., run) a Python program, an interpreter trans-
lates the program code into an efficient intermediate representation
and carries out the corresponding instructions, which are ultimately represented in
the lowest-level computer language calledmachine code. Instructions in machine
code can be given directly to the processor and thereby executed.
An interpreter is a program that translates another program line-by-line. There

is another way of translating a program (written in a programming language)
to machine code—compiling. A compiler takes the entire program at once and
translates it into a highly optimized machine code program, ready for execution.
An interpreter cannot optimize a program as much as can a compiler, but there are
advantages to using an interpreter, including that programs can be run interactively.
The official Python interpreter CPython was installed to our development envi-

ronment in section 1.2. The basic way to run a Python program hello.py is in a
terminal window with the command

python hello.py

Here the interpreter program python is called to interpret hello.py and the results
are printed to the terminal. Programs written in a file like hello.py are called
scripts.
Another way to run a Python script is within an interactive session (i.e., inter-

active shell, read-evaluate-print loop (REPL), or kernel) that runs lines of code as
they are entered by the programmer. There are multiple programs that provide
interactive Python sessions, including the standard one provided by the CPython
distribution and invoked in a termal window with the command python (without

https://engineering-computing.ricopic.one/xq
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a script given). This command causes the terminal to start an interactive session
with a prompt that appears similar to the following:

$ python
Python 3.<specific version number> | <additional information>
Type "help", "copyright", "credits" or "license" for more information.
>>> _

Python statements can be entered here and executed by pressing the key . For
instance, a list can be created and sorted:

>>> l = [1.3, 0.8, 6.1, 3.9]
>>> l.sort()
>>> l
[0.8, 1.3, 3.9, 6.1]

Note that no explicit print() function call is necessary for objects to be printed in
the interactive session. When a statement returns a value of probable interest, the
session automatically prints it.
A more richly featured program for interactive Python sessions is IPython. The

Spyder IDE in our development environment provides an IPython console (like a
terminal) in the lower-right corner in the default layout.

In[1]: x = 4.29
In[2]: y = -38.1
In[3]: x**2 + x*y + y**2
Out[3]: 1306.5651

Within an IPython interactive session, a script can be run with the runfile()
function. This is precisely what Spyder does when a script in the editor is run via the
Run Run menu item, the PLAY button, or the F5 key. An advantage to this technique
is that the variables defined in the script now enter the existing IPython interactive
session, which allows us to play with them for further analytic exploration or for
debugging purposes. Note however that the reverse is not the case: variables from
the interactive session are not available to the script run within that session. This
allows us to have confidence that a script developed with the use of runfile() in
an interactive session can be run outside that session. Therefore, in this book, we
need not be concerned about which method—direct calling of the interpreter via
python or the use of runfile()within an interactive session—was used to run a
Python script.
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2.2 Scripts, Modules, and Imports LINK
V9

As we have seen, the main code for a Python program is written in
a file called a script. There are a few reasons we often want to use
multiple files for a single program:

1. For large programs, a single file becomes unwieldy or difficult to navigate.
2. Portions of our program, like function and class definitions, are self-contained

and potentially useful for other programs.
3. A code library (with its own files) is available to perform certain tasks without
writing that code ourselves (see section 2.3).

In these cases, files containing definitions and statements (usually constants,
functions, and classes) calledmodules can be imported to a main script. We often
write our own modules for the first two cases above; that is, when our script gets
long or certain definitions may be useful for other programs. For example, if we
have defined a function do_something() in a module file a_module.py placed
in the same directory as our main script, we can import the module and use that
function in the main script with the following statements:

import a_module # Import the module
a_module.do_something() # Call the imported function

Note that the function is available as an attribute of a_module (sans .py); that is,
to access the function do_something(), we must call a_module.do_something().
This keeps us from accidentally overwriting names in the main main script or from
other modules. Occasionally, we may want a specific definition from amodule to be
directly available in the script. This can be achieved with the following statements:

from a_module import do_something # Import function from the module
do_something() # Call the imported function

Occasionally, the name of a module is longer than is convenient to use within a
script. In this case, we can give the module a nickname, as in

import a_module as am # Import the module
am.do_something() # Call the imported function

For a project with several modules, it is best to move modules into subdirectories
with names that clearly indicate their functionality. For instance, with a module
in one subdirectory blue_things/cyanotype.py and another module in another
subdirectory red_things/redscale.py, importing these modules requires the
following statements:

import blue_things.cyanotype
import red_things.redscale

Note that the dot “.” indicates that a directory contains the module that follows.

https://engineering-computing.ricopic.one/v9
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2.3 The Python Standard Library and Packages LINK
TQ

This section introduces the importing of modules from the Python
standard library and the importing of external code libraries (pack-
ages).

2.3.1 The Standard Library

Like many programming languages, Python has an extensive standard librarywith
many built-in data types, constants, functions, and modules included. We have
encountered some of these already, and this section gives a very short introduction
to some additional aspects of the library.
Some of the standard library is available in the built-in namespace, such as the

constants True, False, and None and the functions print(), len(), and type().
However, much of the standard library requires the importing of modules. A list
of modules of particular interest to the engineer is given in table 2.1.

Table 2.1. Python standard library modules of particular interest to the engineer.

Module Description

math Math constants and functions for integers and real numbers.
cmath Math constants and functions for integers, real numbers, and complex numbers.
random Functions for generating pseudorandom numbers.
os Functions for interacting with the computer’s operating system and file system.
pathlib Classes for representing file paths in an operating-system independent way.
json Functions for importing and exporting data in the universal JSON format.
pickle Functions for saving and loading objects to files in serialized (compact) form.

Just as with our ownmodules, we can import a module from the standard library
with

import math

and the related variations of import. The standard library modules are always in
the Python search path, which is a list of directories in which Python searches for
modules. The search path begins locally, so if you create a module math.py, the
search path will find it before the standard library version.

https://engineering-computing.ricopic.one/tq
https://engineering-computing.ricopic.one/tq
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2.3.2 Packages

In addition to the standard library modules, a vast collection of Python packages
can be installed and imported. A package is a collection of modules. Packages are
created to organize code into reusable units and distribute them to others.
The official source for Python packages is the Python Package Index (PyPI)

(Python Community 2024b). The pip program distributed with Python is the most
popular tool for installing and managing packages. Packages can be installed in
Anaconda environments with pip, but the use of its own package manager called
conda is preferred. The baseAnaconda environment comes withmany preinstalled
packages useful for engineering computing. The installation process for installing a
package includes adding the package to the Python path so that it is available to all
your Python programs.
Once a package is installed, it can be imported in a script. Most packages import

by default one or more modules; this allows us to import the package in our script
without individually importing each module. For instance, if we would like to use
a function do_something() in the foo.pymodule of the pkg package, we could
write the following:

import pkg # Import the entire package
pkg.foo.do_something() # Call a function in a module loaded by default

If the module is not loaded by default, or if we would only like to load a specific
module, we can manually import the module in the usual way:

import pkg.foo # Import the module
pkg.foo.do_something() # Call a function in the module

Often, packages will import some important functions into its top-level names-
pace such that they can be called with a shorter name. In the example above, the
package could elevate do_something() to its top-level namespace such that it can
be called via pkg.do_something().
Packages can contain packages, called subpackages. Simple packages do not

require this nesting feature, but large and complex packages may.
You may one day create a package of your own. All that is required is to place

your modules into a directory. If you place a special file named __init__.py in
the directory my_pkg, it will be executed whenever the package is loaded.1 Often,
we want to load certain (or all) modules in this file such that they are imported by
default when the package is loaded.
Your package can be distributed via PyPI or another means.

1. For earlier versions of Python, the __init__.py file was obligatory for a package. Now it is optional
but advisable.
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Box 2.1 Further Reading

• Python Community (2024a; § The Python Standard Library)
• Python Community (2024a; § The Python Tutorial, 10. Brief Tour of the
Standard Library)
• Python Community (2024b), to browse PyPI packages
• Python Community (2024c), for information about creating and distributing
packages

2.4 Namespaces, Scopes, and Contexts LINK
YZ

A namespace is a binding of (i.e., a map from) names (identifiers)
to objects. Each name is unique within a namespace. For instance,
there can be only one variable x. In Python, as in many programming languages,
namespaces are created and destroyed throughout the execution of a program.
When a main script is run, the Python interpreter creates (and never destroys) the
built-in namespace that includes mappings for several built-in objects such as the
functions print(), len(), and abs() and the constants True, False, and None.
As we saw in section 2.2, the names in a namespace for an imported module

a_module begin with the name of the module, as in a_module.do_something().
Or, if the module was imported with an alias, as in import a_module as am, the
names in its namespace begin with am.
The main script or a module has a top-level namespace called the global names-

pace. Names defined in the script or module and outside of any function or class
definition go into this top-level namespace. The execution of a function or class cre-
ates a new namespace for it. This is true for nested function and class definitions, as
well. Therefore, a hierarchy of namespaces is created with nested function and class
definitions. At the bottom of this hierarchy is an innermost local namespace. Levels
below the global namespace and above a local namespace are called non-local

namespaces (i.e., enclosing namespaces).
The scope of a name binding (to an object) is the portion of the code of a program

in which the name is bound (i.e., where it can be used).2 The scope of x = 3 is
the part of the code in which the use of x will return that 3. The context for a
given portion of a program is the collection of all bound names and the ordering of
namespaces searched when a name is used. The context of a scope of names in a
local namespace has the following search priority:

1. Local namespace

2. Sometimes the term “scope” is used to mean what we call a “context of a scope.” We will try to avoid
this usage, but it is quite common.

https://engineering-computing.ricopic.one/yz
https://engineering-computing.ricopic.one/yz
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2. Non-local namespaces
3. Global namespace
4. Built-in namespace

For instance, consider the namespaces, scopes, and contexts for the following
script:

x = 3
print(f"Global x: {x}")
def plus_7(y):

x = y + 7
print(f"Local x: {x}")
return x

plus_7(x)
print(f"Global x: {x}")

This prints the following to the console:

Global x: 3
Local x: 10
Global x: 3

To interpret these results, we see that the statement x = 3 binds the name x in the
global namespace such that Global x: 3 is printed. The context for this portion of
code is the collection of bindings for the names in the global and built-in names-
paces and the search priority (1) global namespace and (2) built-in namespace. The
plus_7() function definition creates a new local namespace in which x is bound
with the assignment x = y + 7. The context for the function code block is the set of
bindings for the names in the local, global, and built-in namespaces and the search
priority (1) local namespace, (2) global namespace, and (3) built-in namespace.
Therefore, the use of x here searches the local namespace first; finding one upon
the function being called, it prints (in this case) Local x: 10. Finally, we see that
the global namespace x has been unchanged by the local assignment.

Example 2.1

In the previous example, if we remove the local assignment x = y + 7, what
happens?

Because there is no binding of x in the local namespace of the function, x is not
found here. Therefore, the global namespace is searched; the global namespace
x is found and used within the function. This results in the program printing

Global x: 3
Local x: 3
Global x: 3
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Note that if x had not been found in the global namespace, the built-in namespace
would have been searched. Because this namespace also lacks a binding for x, a
NameErrorwould be raised.

The use of global or non-local names within a function or class definition is
generally discouraged. It is difficult to read and debug code that refers to names
outside of its local namespace. We prefer to pass necessary objects through input
arguments. Even worse than the use of global names within a function or class
definition is their reassignment or their bound object’s mutation. Rarely necessary
and nearly always a bad idea, this can be achieved with the use of the global
and nonlocal keywords. Without these keywords, global and non-local names are
read-only. With their use, global and non-local names can be reassigned and bound
objects mutated, as in the following example:

x = 3
print(f"Global x: {x}")
def plus_7(y):

global x
x = y + 7
print(f"Local x: {x}")
return x

plus_7(x)
print(f"Global x: {x}")

This prints the following to the console:

Global x: 3
Local x: 10
Global x: 10

So we have altered x in the global namespace. Again, it is inadvisable to use this
unless absolutely necessary.
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2.5 Defining Classes LINK
RF

Defining a custom class is an extremely useful way to use Python.
A class object has two kinds of class attributes: data attributes that
store data andmethods, which, as we have already seen, are functions that belong
to and often operate on instances of an object.
A custom class is a convenient way to represent many kinds of objects in engi-

neering. Here are some examples with potential data attributes and methods
included:

• A time-varying signal class with data attributes periodic, period,
amplitude, and frequency and methods rms(), abs(), and plot()
• An experiment simulation class with data attributes time, executed, input,
and output and methods execute(), plot(), and save()
• A truss class with data attributes members, connections, pin_angles,
member_forces, and reactions andmethods analyze(), max_compression(),
max_tension(), and max_reaction()

The basic syntax for a class definition is as follows:

class ClassName:
"""Docsting description"""
<Statement 1>
<Statement 2>
<etc.>

Data attributes can be defined via the usual variable assignment syntax and gener-
ally follow the docstring. Method definitions follow data attributes. Consider the
following class definition to represent a screwdriver tool (perhaps in the context of
a robot’s inventory of available tools):

class Screwdriver:
"""Represents a screwdriver tool"""
operates_on = "Screw" # Class data attributes
operated_by = "Hand"

def drive(self, screw, angle): # Method definition
"""Returns a screw object turned by the given angle"""
return screw.turn(angle)

Any object that is an instance of the class Screwdriver will have the class
attributes defined above. To create an instance (i.e., instantiate), call the class name
as if it were a function with no arguments, as follows:

https://engineering-computing.ricopic.one/rf
https://engineering-computing.ricopic.one/rf
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sd1 = Screwdriver() # Create an instance of the Screwdriver class
sd2 = Screwdriver() # Another instance
sd1.operates_on # Access class attributes
sd1.operated_by

'Screw'

'Hand'

In many cases, we will define a special constructor method named __init__(),
which will be called at instatiation and passed any arguments provided as follows
(we remove docstrings for brevity):

class Screwdriver:
operates_on = "Screw" # Class data attributes
operated_by = "Hand"

def __init__(self, head, length):
self.head = head # Instance data attributes
self.length = length

def drive(self, screw, angle): # Method definition
return screw.turn(angle)

The attributes assigned to self in the __init__()method are called instance data
attributes. The arguments head and length are required positional arguments that
are assigned to the instance data attributes head and length.
Consider the following instances:

sd1 = Screwdriver(head="Phillips", length=7)
sd2 = Screwdriver(head="Flat", length=8)
print(f"sd1 is a {sd1.head}head operated by {sd1.operated_by}")
print(f"sd2 is a {sd2.head}head operated by {sd2.operated_by}")

sd1 is a Phillipshead operated by Hand
sd2 is a Flathead operated by Hand

So we see that instances can have different instance data attributes but they share
the same class data attributes.
Note that every method has as its first argument self, which is the conventional

name given to the first argument, which is always the instance object that includes
the method. When calling a method of an instance, we do not provide the self
argument because it is provided automatically. Before we can call the Screwdriver
method drive(), we should define a Screw class as follows:
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class Screw:
"""Represents a screw fastener"""
def __init__(self, head, angle=0, handed="Right"):

self.head = head
self.angle = angle
self.handed = handed

def turn(self, angle):
"""Mutates angle attribute by adding angle"""
self.angle += angle

Instances of the Screw class have 3 instance attributes, head, angle, and handed.
Let’s instantiate a screw and give it a turn as follows:

s1 = Screw(head="Phillips")
print(f"Initial angle: {s1.angle}")
sd1.drive(screw=s1, angle=3) # Turn the screw 3 units
print(f"Mutated angle: {s1.angle}")
sd1.drive(screw=s1, angle=6) # Turn the screw 6 units
print(f"Mutated angle: {s1.angle}")

Initial angle: 0
Mutated angle: 3
Mutated angle: 9

As we have seen in this example, instance data attributes can represent the state
of an object and methods can mutate or transition that state. This opens up a vast
number of possibilities for the engineer, for we often need to keep track of the states
and state transitions of objects in engineering systems.

2.5.1 Derived Classes

A derived class (also called a subclass) is a class that uses another class as its basis.
A class that is a derived class’s basis is called a base class for the derived class. A
derived class inherits all of the class data attributes and methods of its base class,
and it typically has additional class data attributes or methods of its own.
Continuing the screw and screwdriver example from above, let’s define a derived

class for representing set screws3 as follows:

class SetScrew(Screw):
"""Represents a set screw fastener"""
def __init__(self, head, tip, angle=0, handed="Right"):

self.tip = tip # Add instance attribute
super().__init__(head, angle, handed) # Call base constructor

3. A set screw is a screw that holds an object in place via a force applied by its tip.
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The base class was specified by placing it in parentheses in SetScrew(Screw). It
is not necessary to define a new constructor, but to we did so to add the instance
attribute tip. Rather than duplicating the rest of the base class’s constructor, the base
constructor was called via super().__init__(), to which its relevant arguments
were passed straight through. Trying out the subclass,

sd3 = Screwdriver(head="Hex", length=5)
ss1 = SetScrew(head="Hex", tip="Nylon")
sd3.drive(ss1, 2) # Drive the set screw
print(f"Set screw angle: {ss1.angle}")

Set screw angle: 2

Note what has occurred: the Screwdriver instance sd3 used its drive()method
to call the turn() method of SetScrew instance ss1. This turn() method was
inherited from the Screw class, so we didn’t have to repeat the definition of turn()
in the subclass definition of SetScrew.

2.6 Style Conventions LINK
L4

Aswe have seen, the syntax and semantics of Python leave openmany
semantically equivalent choices to be made for a given program. For
instance, a list can be defined with

l = [
"foo",
"bar",
"baz"

]

or with

l = ["foo", "bar", "baz"]

Semantically, these are equivalent. Which is better? This is the question of style:
what is a good way to make these decisions?
A style guide is a collection of rules to be applied consistently to a program, a

software suite, or even all programs in a given language. Consistency is crucial;
without it, a program will be harder to read, maintain, and improve. The Python
standard library style guide by Rossum, Warsaw, and Coghlan (2024) (often called
simply “PEP 8”) has become the de facto official Python style guide. Most profes-
sionally written programs will follow this guide with more or less variation (e.g.,
there might be a “house” style for certain cases). However, as Emerson tells us and
PEP 8 reminds us,

A foolish consistency is the hobgoblin of little minds

https://engineering-computing.ricopic.one/l4
https://engineering-computing.ricopic.one/l4
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A common paraphrase of this leaves off the qualifier “foolish,” suggesting that
any consistency should be dispatched, which would be … inconsistent … with so
muchwisdom that embraces the value of consistency. However, a foolish consistency
is, indeed, a hobgoblin; a style guide is most effective when its wielder knows when
and how to break from it.
Rather than presenting the PEP 8 style guide in detail, we will learn it through

experience. Most of the code in this book uses the PEP 8 style, with some variation
for succinct presentation. Furthermore, the reader should turn on autoformatting
in the Spyder IDE by opening preferences with Ctrl + , , navigating to the tab
Completion and linting , and, under the “Code formatting” section, choose the code
formatting provider black . Check the box “Autoformat files on save” and click OK .
Now, whenever you save a file, it will be autoformatted in conformance with the
PEP 8 style guide.
The Black code formatter (Langa and contributors to Black 2024) necessarily goes

beyond the PEP 8 guide, which still has some flexibility, to enforce a strict style. It
is used extensively in the software development community, so beginning with
this as a baseline should help you develop well in your own style.
There are some important aspects of style that are not enforced by PEP 8 or

Black, including some aspects of docstrings and type hints. For these, we will follow
another popular style guide from Google (2024), as described in the following
sections.

2.6.1 Docstrings

A docstring is a string literal that is the first statement of a function definition, class
definition, or module (i.e., a .py file). By convention, it is surrounded with three
double-quotation marks, like

"""Here is a docstring."""

For simple functions, classes, and modules, this can be a single line of 88 characters
or less. For instance,

def foo(x):
"""Return a fun string that ends with x."""
return f"This string is fun {x}"

For complex functions, a multiline docstring is necessary and should be formatted
as follows:
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"""A succinct description or imperative.

A longer description or imperative.

Args:
arg1: A description of the first argument.
arg2: A description of the second argument. This one is going to be

longer to show the hanging indent.

Returns:
A description of the return value(s).

Raises:
IOError: An error occurred doing X.
ValueError: An error occurred doing Y.

"""

For complex classes, a multiline docstring should be formatted as follows:

"""A succinct description or imperative.

A longer description or imperative.

Attributes:
attr1: A description of the first attribute.
attr2: A description of the second attribute.

"""

For complex modules, a multiline docstring should be formatted as follows:

"""A succinct description or imperative.

A longer description or imperative.

Typical usage example:

x = FooClass()
y = x.BarFunction()

"""

The “typical usage example” idiom can also be added to function and class
docstrings.
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2.6.2 Type Hints

Unlike programming languages like C, Python is dynamically typed, meaning we
can replace an object a given name refers to with an object of another type. For
instance, the following is fine (but inadvisable):

x = 4 # An int type
x = "foo" # A str type

In a statically typed language like C, a name’s type is explicitly declared with a
statement like int x. This makes it clear to the compiler, interpreter, or (human)
programmer the type of objects to which it can refer.
In Python, type declarations are not required; however, type hints have been

introduced to the language to serve a similar purpose. A type hint is an annotation
of a name (variable or return value of a function) that indicates the type (i.e., class)
of objects that should be stored in it. For instance, we can indicate that variable x
should be of type intwith the statement

x: int # A type hint for variable x, stating x should be an int
x = 3 # Actually assign x

Similarly, a type hint can be included in an assignment statement, as in

x: int = 3 # An assignment of variable x with a type hint

The Python interpreter does not check these hints. However, a separate type-
checker like mypy or pytype can be applied.4 We will not use a type checker, but
we will still find value in type hints as hints to programmers, ourselves most of all.
Before the introduction of these hints to Python, it was common to annotate types
via comments. Now we can reserve comments for more semantic descriptions.
For function definitions, it is very useful to use type checking, as follows:

def foo(x: int, y: complex, z: str) -> str:
"""An operation that returns the score."""
return str(x + y) + z

As we can see, each argument can be annotated, as can the return value via the
syntax ->. Note that for numbers, a type annotation of complex indicates that the
value can have type complex, float, or int (Rossum, Lehtosalo, and Langa 2024).
Similarly, a type annotation of float indicates that the value can have type float
or int. This is an interpretation of Python’s “numeric tower” (Yasskin 2024).

4. At this point, unlike some other IDEs, Spyder doesn’t have type-checking integration.
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Box 2.2 Further Reading

• Rossum, Warsaw, and Coghlan (2024), the general Python style guide
• Rossum, Lehtosalo, and Langa (2024), the original type hint style guide
• Gonzalez et al. (2024), the variable annotation style guide
• Google (2024), the Google Python style guide

2.7 The Design of Programs LINK
MW

Aprogram should be designed. Engineers are designers, so we should
make excellent programmers. Unfortunately, many engineers fail to
carefully consider the design of their programs, at least when it comes to those
programs used for analysis and design. This often leads to programs that function
poorly and are difficult to maintain. The costs associated with this are usually much
greater than those accrued by a systematic design process.5

How should a program be designed? Software design methods abound; how-
ever, they are similar to the (many) design methods used for more conventional
engineering products. Our familiarity with these, as engineers, may allow a cursory
introduction to suffice.
A design typically begins with a design problem: a product (i.e., solution) is

desired, one that does something (i.e., produces an output) for someone (i.e., a cus-
tomer). For engineering computing programs, we engineers are often the customers,
and the output is usually information for an analysis or design problem. The prod-
uct or solution is the program itself. The design problem is often rather ill-defined
at first, and we must question the customer about their goals throughout the design
process. Often, the problem we thought we were solving at the beginning changes
throughout the design process. Similarly, the program (solution) undergoes several
iterations.
Two of the most important ways to think about program design are introduced

in the rest of this section: (1) the functional analysis design method and (2) the
pseudocode algorithm representation.

5. It should be noted, however, that for back-of-the-envolope calculations, we need not spend the time
on a systematic design process. A paradigm I like to use is to create an exploratory play.py file in a
project or simply use an interactive session. In this type of environment, we can explore without concern
for structure, style, and careful design processes.

https://engineering-computing.ricopic.one/mw
https://engineering-computing.ricopic.one/mw
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2.7.1 The Functional Analysis Design Method

One way to organize our thinking about the program (solution) is to begin at the
highest level and ask the question:

What will the program start with and what will it need to produce?

This amounts to the question: What are its inputs and outputs? Figure 2.1a
illustrates this high-level conception of the program as a block that transforms
inputs into outputs.

Product
(Program)

Inputs Outputs

(a) High-level product functionality.

FunctionInputs Outputs

(b) General function.

Figure 2.1. The functional design method (a) at the highest level and (b) in general, for
any level.

This is the beginning of the functional analysis design method. We have treated
the program as a function, which, like a mathematical function, maps inputs to
ouputs. The next step is to consider the question:

How can the program achieve this transformation of its inputs to its outputs?

Many techniques may be explored, but often they can be separated into subfunc-
tions. The subfunctions can themselves have subfunctions. This way of breaking
down the problem into functions and subfunctions is the key to the power of the
functional analysis design method. We see that, at all levels, the paradigm of map-
ping of inputs to outputs through functions applies, as illustrated in figure 2.1b.
Drawing these functional blocks and connecting their inputs and outputs is a crucial
step in a program design process.
In Python program design, we have Python functions (section 1.7) and methods

(section 1.3) to perform the role of the function blocks in the functional analysis
designmethod. Inputs are passed as input arguments (or objects) and outputs are the
returned values (or mutated objects). If we begin by sketching a functional diagram
of inputs, outputs, and functional blocks from the highest level to the lowest, the
programming of the corresponding Python functions and methods becomes a
matter of implementing a structure we have already thoroughly considered. This
technique is a great way to overcome the anxiety of the “blank page.”
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2.7.2 Algorithm Representation via Pseudocode

At a certain depth, the functional blocks of section 2.7.1 have reached a level that is
best treated as indivisible. It is not always obvious when this point is reached, but
we can always iterate later. From here, simple functional blocks can be implemented
directly in Python functions. For complex functions, a more complex sequence of
steps may be necessary. We call a sequence of steps like this an algorithm.6

It is often useful to outline an algorithm schematically in a language we call
pseudocode. This is a loose but programming-like language used to describe
the algorithm without concern for syntax and implementation details. That is,
pseudocode is used to express in structured natural language the semantics of a
program without concern for its syntax in any specific programming language. The
term “structured” here means some familiar programming structures—such as
assignments, branches, loops, and functions—appear in pseudocode.
A sorting algorithm is an algorithm for sorting the elements of a list (e.g., num-

bers) by some metric (e.g., magnitude) such that the input list is returned ordered.
There are many sorting algorithms with different efficiencies, but a relatively sim-
ple one is called bubble sort. For the sake of simplicity, we consider a list of =
distinct numbers to be ordered such that they have increasing value. This algorithm
repeatedly passes through the list, comparing adjacent elements and swapping their
positions if they are out of order. After a single pass through the list, the greatest
element will be in the last position because in every pairing, it is the greater. After
the second pass, the second-greatest element will be in the penultimate position.
After = − 1 passes, the list should be sorted.
In pseudocode, we can describe the algorithm more precisely, as shown in

algorithm 1.

Algorithm 1 bubble_sort_basic pseudocode

function bubble_sort_basic(list)
for 8← 0, = − 1 do ⊲ Repeat = times

for 9← 0, = − 8 − 1 do ⊲ Pass through potentially unsorted elements
if ;8BC[9]> ;8BC[9 + 1] then

Swap ;8BC[9] and ;8BC[9 + 1]
return list

Can you think of a way to improve this algorithm? Often, when we write out
the algorithm in pseudocode, it becomes more clear and improvements suggest
themselves.
Once the algorithm for all complex functions are written in pseudocode, it is time

to implement them as Python functions or methods. The functional analysis design

6. The term “algorithm” is actually quite broad, encompassing any technique for solving a problem.
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diagrams of section 2.7.1 and the pseudocode algorithms from this section will help
us rationalize this process and greatly improve our programs.

Box 2.3 Further Reading

• Abelson and Sussman (2016), a classic that teaches us how to think about
computer programs
• Cross (2021), an engineering design methods (not specific to software) book
with formal methods and useful case examples; see especially chapter 7 on the
functional design method
• Hunt and Thomas (1999), a practical approach to designing programs, filled
with nuggets of wisdom
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2.8 Problems LINK
VL

Problem 2.1 LINKWQ Write a program in a single script that meets the following
requirements:

a. It imports the standard library randommodule.
b. It defines a function rand_sub() that defines a list of grammatical subjects

(e.g., Jim, I, you, skeletons, a tiger, etc.) and returns a random subject; consider
using random.choice() function.

c. It defines a function rand_verb() that defines a list of verbs in past tense
(e.g., opened, smashed, ate, became, etc.) and returns a random verb.

d. It defines a function rand_obj() that defines a list of grammatical objects
(e.g., the closet, her, crumbs, organs) and returns a random object.

e. It defines a function rand_sen() that returns a random subject-verb-object
sentence as a string beginning with a capital letter and ending with a period.

f. It defines a function rand_par() that returns a random paragraph as a string
composed of 3 to 5 sentences (the number of sentences should be random—
consider using the random.randint(a, b) function that generates an int
between a and b, inclusively). Sentences should be separated by a space " "
character.

g. It calls rand_par() three times and prints the results.

Problem 2.2 LINKSK Rewrite the program from problem 2.1 such that it meets the
following requirements:

a. It defines the functions in a separatemodule with the file name rand_speech
_parts.py.

b. Instead of defining the lists of subjects, verbs, and objects inside the functions,
it assigns a variable to each list in themodule’s global namespace and accesses
them from within the functions. Why is this preferable?

c. It imports the module into the main script.
d. It print three random paragraphs, as before.

Problem 2.3 LINKYE Write a program in a single script that meets the following
requirements:

a. It imports the standard library randommodule.
b. It defines a function rand_step(x, d, ymax, wrap=True) that returns

a float that is the sum of x and a uniformly distributed random float
between -d and d. Consider using the random.uniform(a, b) function that

https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/wq
https://engineering-computing.ricopic.one/sk
https://engineering-computing.ricopic.one/ye
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returns a random float between a and b. If wrap is True, it maps a stepped
value y > ymax to y - ymax and a stepped value y < 0 to ymax + y. If
wrap is False, it maps a stepped value y > ymax to ymax and a stepped
value y < 0 to 0.

c. It defines a function rand_steps(x0, d, ymax, n, wrap=True) that
returns a list of n floats that are sequentially stepped from x0. It passes
wrap to its call to rand_step().

d. It defines a function print_slider(k, x) that prints k characters, all of
which are - except that which has index closest to x, for which it prints |.
For instance, print_slider(17, 6.8) should print

-------|---------

Consider using the built-in round() function.
e. It defines a function rand_sliders(n, k, x0=None, d=3, wrap=True)

that prints n random sliders of k characters and max step d starting at the
index closest to x0, if provided, and otherwise at the index closest k/2.

f. It prints 25 random wrapped sliders of 44 characters with the default step
range and starting point 2.

g. It prints 20 random nonwrapped sliders of 44 characters with the step range
5 and starting point 42.

Problem 2.4 LINK8G Rewrite the program from problem 2.3 such that it meets the
following requirements:

a. It defines the functions in a separate module with the file name rand
_sliding.py.

b. It imports the module into the main script.
c. It prints 25 random wrapped sliders of 44 characters with the default step

range and starting point 42.
d. It prints 20 random nonwrapped sliders of 44 characters with the step range

5 and starting point 2.

Problem 2.5 LINKUZ Begin with the Screwdriver, Screw, and SetScrew class
definitions of section 2.5. Add the following features:

• Improve the Screwdriver.drive()method to check that its head matches
the screw head and raise a TypeError exception if they do not
• Improve the Screw class by adding instance attributes pitch that stores the
thread pitch in mm and depth that stores the depth of the screw in its hole

https://engineering-computing.ricopic.one/8g
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• Improve the Screw.turn()method to mutate the depth based on the angle
it is turned, its handing, and its thread pitch7

• Create a subclass MetricScrew from the base class Screwwith the additional
class data attribute kind = "Metric"

Test the new features of the Screwdriver, Screw, and MetricScrew classes with
the following steps:

a. Create an instance ms1 of MetricScrewwith right-handedness, a flat head,
initial angle 0 rad, and thread pitch 2 mm (corresponding to an M14 metric
screw)

b. Create an instance sd1 of Screwdriverwith a flat head
c. Turn the ms1 screw 5 complete clockwise revolutionswith the sd1 screwdriver

and print the resulting angle and depth of ms1
d. Turn the ms1 screw 3 complete counterclockwise revolutions with the sd1

screwdriver and print the resulting angle and depth of ms1
e. Create an instance ms2 of MetricScrew that is the same as ms1, but with

left-handedness
f. Turn the ms2 screw 4 complete counterclockwise revolutions with the sd1

screwdriver and print the resulting angle and depth of ms2
g. Turn the ms2 screw 2 complete clockwise revolutionswith the sd1 screwdriver

and print the resulting angle and depth of ms2
h. Create an instance sd2 of Screwdriver with a hex head and try to turn the

sd1 screw and catch and print the exception

Problem 2.6 LINKVX Improve the bubble sort algorithm of algorithm 1 by adding
a test that can return the list if it is sorted before completing all the loops. Imple-
ment the improved bubble sort algorithm in a program that it meets the following
requirements:

a. It defines a function bubble_sort(l: list) -> list that implements the
bubble sort algorithm.

b. It demonstrates the bubble_sort() function works on three different lists
of numbers.

c. It demonstrates that the early return functionality, in fact, saves us from
making extra passes through the list.

Problem 2.7 LINKYS Preprogramming work: In this problem, before writing the pro-
gram specified, (1) draw a functional design method diagram (see section 2.7.1) and
(2) write a pseudocode for each function (see section 2.7.2).

7. A right-handed screw with thread pitch ? (mm), turned clockwise an angle 
 (rad), advances forward
ℓ = ?
/(2�)mm. A full turn (i.e., 
= 2�) advances the screw ℓ = ? mm. Treat clockwise turns as positive
angles.

https://engineering-computing.ricopic.one/vx
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Restrictions: In this problem, most of the functions you will write already exist
in the standard libary module statistics. You may not use this module for this
problem, but you may use others, such as the mathmodule. You may also use list
methods such as sort(). Furthermore, you may not use any external packages.
Programming: Write a program in a single script that meets the following

requirements:

a. It defines a function stats(x: list) -> dict that computes the following
basic statistics for input list x of real numbers:
i. The sample mean; for a list G of = values, the sample mean < is

<(G)= 1
=

=−1∑
8=0

G8 .

ii. The sample variance; the sample variance B2 is

B2(G)= 1
= − 1

=−1∑
8=0

(G8 −<(G))2 .

iii. The sample standard deviation; the sample standard deviation B is

B(G)=
√
B2(G).

iv. The median; the median " of a sorted list G of = numbers is value of
the list at index 8" = (= − 1)/2 (i.e., the middle index); more precisely,

"(G)=
{
G8" 8" is an integer
1
2

(
Gb8"c + Gd8"e

)
otherwise

where b·c is the floor function that rounds down and d·e is the ceiling
function that rounds up. So in the case that there is no middle index,
the mode is the mean of the two middle values.

The stats() function should return a dictwith the keys "mean", "var",
"std", and "median" correspond to values for the computed sample mean,
variance, standard deviation, and median.

b. It demonstrates the stats() function works on three different lists of
numbers.





3 Numerical Analysis I: Representations, Input and
Output, and Graphics

LINK
R3

Engineering design is usually heavily supported by numerical calculations. One of
the first and enduring uses of computers is to automatically perform these calcu-
lations for engineers; in fact, the first “computers” were humans who performed
numerical calculations by hand, as shown in figure 3.1.

Figure 3.1. A “computer room” at the NACA (precursor to NASA) high-speed flight
station in 1949 (NASA 2002).

We call engineering numerical calculations numerical analysis. Many program-
ming languages and software packages have been used for numerical analysis, but
by far the most popular these days are MATLAB and Python. Python’s built-in
data types (e.g., list) and functions (e.g., sum) can be used directly for numerical

https://engineering-computing.ricopic.one/r3
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analysis; however, for most engineering problems it is advantageous to use the
ubiquitous package NumPy (Harris et al. 2020). The primary reasons this is pre-
ferred are that NumPy provides data types, functions, and methods optimized for
numerical calculations, which go far beyond Python’s built-in modules. In the first
several sections of this chapter, we will explore NumPy’s data types (most notably
the array) and some of its basic functions and methods.
The numerical data represented in NumPy often originates as data from outside

the program (e.g., from sensor data gathered via an experiment). Stored in files of
various formats, the data must be read from computer memory1 into the program.
This is the most common kind of a program’s inputs. On the other end, a program
can have outputs, frequently data files written to computer memory. In this chapter,
we will learn how to load input data from files and write output data to files.
Another important kind of program output is a graphic—usually a graph, a

plot, or a chart. A graphic is often a very important result of a numerical analysis,
data visualization being a key component of engineering decision making. In this
chapter, we will learn how to use the Python package Matplotlib (Hunter 2007) to
generate graphics from data.

3.1 Arrays LINK
WA

NumPy arrays are ubiquitous for representing numerical data. Like
lists, arrays aremutable and can represent collections of objects. Unlike
for lists, the elements of an array must all be of the same (typically numeric) type.
In this section, we learn how to create and manipulate basic arrays. Throughout
this book, we will assume that the NumPy package is loaded with the following
statement:

import numpy as np

3.1.1 Creating Arrays

To construct a basic array (i.e., class np.ndarray), we often use the function
np.array(). Although many types of objects can be passed, a list will often do, as
follows:

x = np.array([0.29, 0.55, -0.31, -0.84, 0.97])

The shape attribute of the np.ndarray object is an integer tuple representing
the size (i.e., length) of each of its dimensions. For instance, the shape of the
1-dimensional (1D) array of five elements given the name x above is printed with

1. The program typically reads a file stored in “secondary” (i.e., long-term) memory and loads it into
“main” memory, which is faster to access for calculations. Similarly, when a program writes to a file, it
stores data that is in main memory in secondary memory.

https://engineering-computing.ricopic.one/wa
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print(x.shape)

This returns (5,), which indicates the array has a single dimension, called an axis
in NumPy, with size 5.
In NumPy, 1D arrays are called vectors, 2D arrays are called matrices, and

higher-dimensional arrays are called tensors. The mathematical objects with the
same names (i.e., vectors, matrices, and tensors) are usually represented with arrays
with corresponding names. A matrix can be created as follows:

A = np.array([
[0, 1, 2, 3], # First row
[4, 5, 6, 7], # Second row
[8, 9, 10, 11], # Third row

])

So A.shape is (3, 4) and it represents a 3× 4 mathematical matrix.
We often need to create an array with a specific shape and populate it later.

Perhaps the best way to do so is a function call like

T = np.full(shape=(5, 3), fill_value=np.nan)

This creates a (5, 3) matrix with the special nan (i.e., not a number) float as
each element. Related functions np.zeros() and np.ones() can also be used to
create arrays of arbitrary shape filled with 0 and 1 values, respectively. However,
for an array that is to be populated subsequently, we prefer np.full()with nan
elements because it is easier to notice if parts of the array have been mistakenly left
unpopulated.
The np.arange() function is similar to the built-in range() function. An

array of sequential numbers with integer spacing can be easily created with the
np.arange() function. For instance,

np.arange(start=0, stop=10)
np.arange(0, 10)
np.arange(stop=10)
np.arange(10)

All these statements yield an array that prints as follows (printed arrays look like
lists):

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Of course, the start argument is necessary for an array that starts at a value
other than 0. There is a step argument for np.arange(), and it is useful for integer
steps other than the default 1. However, for non-integer steps, we prefer a different
function altogether: np.linspace(). For instance, the following creates a 1D array
of 31 elements from 0 to 3:
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np.linspace(start=0, stop=3, num=11)

This array can be printed to show the following:

[0., 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.]

Note that by default stop is the last sample; endpoint=Falsewould exclude it.
We make extensive use of np.linspace() and regular use of the similar

np.logspace(), which creates a 1D array logarithmically spaced between two
powers of the base provided. For instance, in the default base 10, we can generate 6
values from 100 to 103 with

np.logspace(start=0, stop=3, num=6)

This array can be printed to show the following:

[1., 3.98107171, 15.84893192, 63.09573445, 251.18864315, 1000.]

Most of the time, we use numeric values (i.e., dtypes of int, float, complex,
and bool types) in Python arrays. It is also possible to create a Python object array
with dtype "O" for object; for instance:

A = np.array([{"foo": "bar"}, {"bar": "baz"}]) # An object array

Printing the A.dtype attribute reveals that it is type object. It is occasionally
advantageous to use object arrays instead of lists, primarily for the convenience of
NumPy’s array manipulation capabilities.

3.1.2 Accessing, Slicing, and Assigning Elements

Array elements can be accessed via indices in the same way as with lists. For
instance,

A = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) # 3x4
A[0, 0] # => 0
A[0, 3] # => 3
A[1, 0] # => 4
A[2, 3] # => 11
A[1] #=> [4, 5, 6, 7]

Similarly, array slicing has the same syntax as list slicing. For instance,

A[0:2] # => [[0, 1, 2, 3], [4, 5, 6, 7]] (view)
A[:-1] # => [[0, 1, 2, 3], [4, 5, 6, 7]] (view)
A[:, 1] # => [1, 5, 9] (view)
A[:, 0:2] # => [[0, 1], [4, 5], [8, 9]] (view)

An important difference between list and array slicing is that, whereas in list
slicing the returned list is a copy of a portion of the original list, in array slicing, the
returned value is a view of a portion of the original array. An array view object,
just as with dict view objects (see section 1.6), uses the same data as the original
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object. Therefore, mutating a view object mutates its original object and vice versa.
For instance, using the same Amatrix from above,

a = A[:, 0] # => [0, 4, 8] (first column view)
a[1] = 6 # Assign a new value to view element (second row)
A[0, 0] = 2 # Assign a new value to the original array
print(a)
print(A)

This prints

[2 6 8]
[[ 2 1 2 3]
[ 6 5 6 7]
[ 8 9 10 11]]

In other words, the data in A and a are the same data. To create a copy instead of a
view from a slice, simply append the copy()method. For instance, the following
array b is a copy of a portion of A, so its data are independent:

b = A[:, 0].copy() # => [0, 4, 8] (first column copy)

It is often useful to find the indices of an array that meet some condition. Placing
an array in a conditional statement returns Boolean an array of Boolean values for
each element that can be used as an index for the array. For instance,

A = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) # 3x4
print(A > 4)

prints

[[False, False, False, False]
[False, True, True, True]
[ True, True, True, True]]

This can be used as an index to select those elements that meet the condition. For
instance,

A[A > 4]

returns those elements greater than 4, as follows:

[ 5, 6, 7, 8, 9, 10, 11]

The use of the Boolean-valued array resulting from the expression A > 4 as an
index is a type of advanced indexing (i.e., slicing), which uses an array with data
type Boolean or integer, a non-tuple sequence, or a tuple with at least one sequence
object. Unlike basic slicing, which returns a view of the original array, advanced
indexing always returns a copy.
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Because arrays are mutable, elements can be replaced just as with lists. For
instance, the statements

A[0, 0] = 2
A[:, 2] = 2

mutate A such that it now prints as

[[ 2, 1, 2, 3],
[ 4, 5, 2, 7],
[ 8, 9, 2, 11]]

Combining the conditional indexing from above with assignment, we can make
assignments based on a condition. For instance, working with the same A array, we
can coerce values above 5 to 5 as follows:
A[A > 5] = 5

Now A prints as

[[2, 1, 2, 3],
[4, 5, 2, 5],
[5, 5, 2, 5]]

3.1.3 Appending To and Concatenating Arrays

Appending an element to an array is possible with the np.append() function (there
is no append()method), but its use in loops is discouraged due to the fact that it
creates a new copy of the array at every call. However, in some cases it is just the
right function, and it works as shown in the following code:

a = np.array([0, 1, 2])
np.append(a, 3) # => [0, 1, 2, 3]

When needing to construct the elements of an array in a loop, it is vastly more
efficient to initialize the array with np.full() or similar function (see section 3.1.1)
before beginning the loop, using index assignment. For instance,

a = np.full((5,), np.nan) # Initialize with nans
for i in range(0, len(a)):

if i == 0:
a[i] = 1

else:
a[i] = (a[i - 1] + 1) ** 2

print(f"It is {np.any(np.isnan(a))} there are nans in a:\n{a}")

prints

It is False there are nans in a:
[1.00000e+00 4.00000e+00 2.50000e+01 6.76000e+02 4.58329e+05]
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The statement np.any(np.isnan(a)) is a nice idiom for detecting if any nans
remain in the array. This is a good check that we have in fact replaced all elements
of the initialized array with numbers.
Array concatenation is the ordered collection of arrays. The np.concatenate()

function returns a concatenation of arrays given as a tuple to its first argument. For
instance,

a = np.array([[0, 1], [2, 3]]) # 2x2
b = np.array([[4, 5]]) # 1x2
np.concatenate((a, b)) # => [[0, 1], [2, 3], [4, 5]] (3x2)

The axis optional argument, 0 by default, determines the dimension alongwhich
the array concatenates. For instance, with the same a and b from above,

np.concatenate((a, b), axis=0) # => [[0, 1], [2, 3], [4, 5]] (3x2)
np.concatenate((a, b.T), axis=1) # => [[0, 1, 4], [2, 3, 5]] (2x3)

Here we have used the transpose array attribute, which returns a view of the array
with its axes swapped (see section 3.2.1). The arrays to be concatenated must have
matching dimensions except in the axis dimension.

Box 3.1 Further Reading

• NumPy Developers (2024c), for a basic and short introduction to NumPy

3.2 Manipulating, Operating On, and Mapping Over Arrays LINK
84

In this section, we learn to manipulate, operate on, and map over
NumPy arrays.

3.2.1 Array Manipulation Functions and Methods

NumPy has many powerful functions and methods for manipulating arrays. We
cover only those most frequently useful to us, here; for a full list and documentation,
see (NumPy Developers 2024a).

3.2.1.1 Sorting To sort an array, the np.sort(a) function returns a sorted copy
of a and the a.sort()method will sort (mutate) a itself. For instance,
a = np.array([6, -3, 0, 9, -6])
np.sort(a) # => [-6, -3, 0, 6, 9] (copy)
a.sort() # a: [-6, -3, 0, 6, 9]

The function and the method have the same optional arguments, the most useful
of which is axis: int, the axis along which to sort. The default is -1 (i.e., the last
dimension).

https://engineering-computing.ricopic.one/84
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3.2.1.2 Transposing The mathematical matrix transpose (i.e., swapping dimen-
sions by flipping the matrix along its diagonal) can be obtained for a Python matrix
via a few different techniques. The following three techniques neither mutate the
original matrix nor return transposed copies; rather, they return a transposed view
of the original matrix:

A = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) # 3x4
A.T # Transpose attribute (view)
A.transpose() # Transpose method (view)
np.transpose(A) # Transpose function (view)

All three transpose statements return a 4× 3 array view that prints as follows:

[[ 0, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11]]

The original array A remains the same and is linked to the transposed view objects.
To get a transposed copy, append the copy()method to any of these statements.
Unlike for matrices, a vector transpose view is no different than the original

vector. However, a row vector (i.e., 2D array with first axis of length 1) or a column

vector (i.e., 2D array with second axis of length 1) can be created by adding an axis
to a vector. For instance,

a = np.array([0, 1, 2, 3]) # A vector
a.T # => [0, 1, 2, 3] (same vector view)
a[np.newaxis, :] # => [[0, 1, 2, 3]] (1x4 row vector view)
a[:, np.newaxis] # => [[0], [1], [2], [3]] (4x1 column vector view)

The following are the shapes of these objects:

• a.shape returns (4,) (i.e., a 1D array of size 4)
• a[np.newaxis, :].shape returns (1, 4) (i.e., a 2D view of shape 1× 4)
• a[:, np.newaxis].shape returns (4, 1) (i.e., a 2D view of shape 4× 1)
Constructing row and column vectors will be important for computing math-

ematical matrix-vector multiplication. They can also be properly transposed
back-and-forth between row and column vectors.

3.2.1.3 Reshaping Transposing, as we have seen, is one way to reshape an array.
Another way is to use the np.reshape(a: np.ndarray, newshape: tuple)
function or the equivalent method for array a, a.reshape(newshape: tuple).
Both return a view of the original array with its elements filling the newly shaped
array. The argument newshapemay be an int, in which case the array is flattened
1D array, or a tuple following the usual pattern of an array shape. The number of
elements in the new view must equal that of the original array. For instance,
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A = np.array([[0, 1, 2], [3, 4, 5]]) # A 2x3 matrix
Ar = A.reshape((3,2)) # => [[0, 1], [2, 3], [4, 5]] (3x2 view)

This also provides a second way of forming a row or column vector view from a
1D array; for example,

a = np.array([0, 1, 2])
a_row = np.reshape((1, len(a))) # 1x3 row vector view
a_col = np.reshape((len(a), 1)) # 3x1 column vector view

3.2.2 Operations on Arrays and Broadcasting

The basic arithmetic operators +, −, ×, and / can be applied to NumPy arrays with
the operators +, -, *, and /, respectively. These operations are applied element-wise

as the following example demonstrates:

a = np.array([0, 1, 2])
b = np.array([3, 4, 5])
a + b # => [3, 4, 7]
a - b # => [-3, -3, -3]
a * b # => [0, 4, 10]
a / b # => [0, 0.25, 0.4]

3.2.2.1 Broadcasting In the cases above, the array shapes matched exactly. How-
ever, it is convenient to be able to perform these types of operations on arrays of
different size such that the smaller array dimensions are broadcast (i.e., stretched
or copied) to fill in the portions of the array it is missing. The simplest case is for an
operation between a 0D array (i.e., a scalar) and another array, as in the following
cases:

a = np.array([0, 1, 2])
a + 4 # = a + [4, 4, 4] => [4, 5, 6]
a - 4 # = a - [4, 4, 4] => [-4, -3, -2]
a * 4 # = a * [4, 4, 4] => [0, 4, 8]
a / 4 # = a / [4, 4, 4] => [0, 0.25, 0.5]

Here the scalar 4 was broadcast to match the (larger) a array with shape (3,) and
added element-wise.
Broadcasting is quite general and works for operations between arrays of many

dimensions. Dimensions of two arrays are compatible if they are of equal size or
if one has size 1, in which case it can be broadcast. The dimensions are compared
from last to first. If one array runs out of dimensions, the rest are treated as 1. Here
are some examples of compatible array dimensions in each column:
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3× 3 7× 1× 4 9× 7× 4
1× 3 4× 4 7× 1
3× 1 7× 4× 1 500× 1× 1× 4

4× 3× 1 1× 4 9× 1× 1

Operations on arrays with compatible dimensions will be broadcast automatically.
This is not only convenient, in most cases it is also much more efficient (in terms of
memory usage and computation time) than constructing the arrays or executing
loops.2 Therefore, we usually prefer broadcasting.

3.2.2.2 Matrix Multiplication Matrix multiplication can be performed with the
@ operator. For instance, consider the matrices and column vector

�=


0 1 2
3 4 5
6 7 8

 , �=


0 1
2 3
4 5

 , and x =


0
1
2

 .
Further consider the following matrix products:

��, �x , and �>�x.

The following code computes these products:

A = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 3x3
B = np.array([[0, 1], [2, 3], [4, 5]]) # 3x2
x = np.array([[0], [1], [2]]) # 3x1
A @ B # => [[10, 13], [28, 40], [46, 67]] (3x2 matrix)
A @ x # => [[5], [14], [23]] (3x1 column vector)
B.T @ A @ x # => [[120], [162]] (2x1 column vector)

The @ operator is equivalent to the use of the np.matmul() function. A related
function is np.dot(a, b), which takes the dot product of a and b. If a and b are
matrices, this is equivalent to a @ b. However, in this case np.matmul() and a @ b
are preferred.

3.2.2.3 Other Matrix Operations We have considered matrix transposes and
multiplication. Other common mathematical matrix operations include addition,
subtraction, and scalar multiplication. These are element-wise operations, so we
can simply use NumPy’s usual +, -, and * operators, respectively.
The multiplicative inverse �−1 of a matrix � can be computed with the

np.linalg.inv() function from the linalgmodule. For example,

A = np.array([[1, 0, 0], [0, 2, 0], [0, 0, 4]]) # 3x3
np.linalg.inv(A) # => [[1., 0., 0.], [0., 0.5, 0.], [0., 0., 0.25]]

2. Loops are executed in broadcasting, but these are loops in the more-efficient C programming language
(in which Python is written), not in Python.
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If the matrix is not invertible, the exception LinAlgError: Singular matrix is
raised.

3.2.2.4 Element-Wise Mathematical Functions NumPy has mathematical func-
tions that automatically operate element-wise on arrays. Trigonometric functions
include np.sin(), np.cos(), and np.tan(); exponential and logarithmic func-
tions include np.exp(), np.log(), and np.log10(); hyperbolic functions include
np.sinh(), np.cosh(), and np.tanh(); complex-number functions include
np.real(), np.imag(), and np.angle(); rounding functions include np.round(),
np.ceil(), and np.floor(). All these functions operate element-wise, as shown
in the following example:

x = np.linspace(0, 2*np.pi, 5)
np.round(np.sin(x), 10) # => [0., 1., 0., -1., -0.] (round to 10 dec.)
np.round(np.cos(x), 10) # => [1., 0., -1., -0., 1.] (round to 10 dec.)

This element-wise operation is not only convenient, it is highly optimized. NumPy
takes advantage of precompiled C functions for performing these operations, so
they execute much faster than would a Python loop through each element. The
element-wise operation is called vectorization (n.b., sometimes this is the term
given to the sometimes-attendant optimization), and NumPy takes great advantage
of this, which is one of its key features.

3.2.3 Mapping Over Arrays and Lambda Functions

As we have seen, NumPy includes many built-in functions that are vectorized (i.e.,
applied element-wise). Our own custom function and method definitions can (and
often should) also be vectorized. Usually, nothing special is required because we
can take advantage of NumPy’s built-in functions and broadcasting. For instance,
consider the following example, which defines a Python function corresponding to
G ↦→
√
G − 1:

def sqrt_m1(x: np.ndarray) -> np.ndaray:
return np.sqrt(x) - 1

Here np.sqrt(x) is already vectorized and the subtraction is automatically broad-
cast, so our sqrt_m1 is vectorized. Note that this will be much faster than a for
loop through the elements of x.
In general, the application of a function to each element of an array (or iterable)

object is calledmapping. In plain Python, we can apply a function f to each element
of a list lwith the built-in function map(f, l). This is effectively just a for loop,
which is not particularly performant. Vectorization in NumPy allows us to usually
avoid for loops or equivalent calls to map().
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3.2.3.1 Lambda Functions At times, it is convenient to write an anonymous

function, often called a lambda function, which is a function that need not be given
a name (although it can be). Mathematically, a lambda function can be expressed
as, for instance,

G ↦→ (G + 2)3.
The Python syntax for a corresponding lambda function is

lambda x: (x + 2) ** 3

A lambda function can be applied directy to an argument. For instance,

(lambda x: (x + 2) ** 3)(1) ## => 27

It can also be given a name, as in

f = lambda x: (x + 2) ** 3
f(1) # => 27

In some ways, this defeats the purpose of the lambda function. The PEP 8 style
guide discourages this use.
So when is a lambda function actually useful? One case is for applying a non-

vectorized function to a list. For instance,

l = [1, 2, 3]
list(map(lambda x: x ** 2, l)) # => [1, 4, 9]

However, in this and most cases where numerical computation, it is better to use
the vectorization of NumPy. In the case of a non-numerical function mapping over
a list of strings, the lambda function is a good choice, as in the following case:

l = ["foo", "bar", "baz"]
list(map(lambda s: s.capitalize(), l)) # => ["Foo", "Bar", "Baz"]

3.2.3.2 Conditional Functions There are some more complex custom functions
that are difficult to vectorize. An example is a function with conditions. Consider
the following function:

def square_positive(x):
if x > 0:

return x ** 2
else:

return x

This function can be applied to a single number x, but it cannot take an array
argument. One solution would be to write a for loop over the elements of x, but
this would be inefficient.
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The function np.where(condition, a_true, a_false) returns an array cho-
sen from a_true and a_false based on the condition. Consider the following
version of square_positive():
def square_positive(x: np.ndarray) -> np.ndarray:

return np.where(x > 0, x ** 2, x)

This is vectorized so it can be applied to arrays and it is much more performant
than a for-loop solution.

Box 3.2 Further Reading

• NumPy Developers (2024b), for a thorough introduction to NumPy
• NumPyDevelopers (2024a), for theAPI reference that describesNumPy classes,
functions, and methods in detail

3.3 Input and Output LINK
J4

A program’s input and output refer to the the information provided
to a program fromwithout and the information the program produces.
We have already seen examples of Python programs’ output in the form of text
printed to a console. Thus far, our programs have had no input because they have
contained all the information they need.
In this section, we consider a few important types of Python input and output. In

section 3.4, graphical output will be introduced.

3.3.1 User Input

A user can interact directly with a Python program via the built-in function
input(prompt). The prompt argument is printed to the console and the user can
type in a response, finishing with the key. For instance, consider the following
program:

import fractions # Built-in module
response = input( # Solicit user input

"What are my chances? (Enter a fraction): " # Prompt
)
if float(fractions.Fraction(response)) > 0.:

print("So you're tellin' me there's a chance. YEAH!")

Running this program prints the following prompt:

What are my chances? (Enter a fraction): |

Suppose the user enters 1/1_000_000. This is read by the input function and
stored as a str in the variable response. A string can be cast to a fraction using

https://engineering-computing.ricopic.one/j4
https://engineering-computing.ricopic.one/j4
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the fractions module’s fractions.Fraction() function. The fraction can be
converted to a float with the float() function. In the case that the user enters
1/1_000_000, the following would print to the console:

So you're tellin' me there's a chance. YEAH!

3.3.2 Text Files

A text file is a common type of input and output. Text files contain information
in the form of lines of text. They are typically readable by a human, such that a
text file can be viewed in a text file viewer or editor (e.g., Windows Notepad and
TextEdit). While some text files have extension .txt, most do not. In fact, a Python
script (with extension .py) is a text file.

3.3.2.1 Reading a Text File In Python, a text file can be opened and read with
the following pattern:

with open("filename") as f: # Open a file for reading
contents = f.read() # Read and assign the entire contents

The built-in open() function takes the optional argument mode, which can have
one of the following values:

• "r": Read only (default)
• "w": Write only (will overwrite an existing file)
• "a": Append to an existing file
• "r+": Read and write
For instance, suppose a file named hamlet.txt in the working directory has the

following contents:

To die, to sleep;
To sleep: perchance to dream: ay, there's the rub;
For in that sleep of death what dreams may come

The following program reads the file and prints a line every 3 seconds:

import time # Built-in module
with open("hamlet.txt", mode="r") as f:

contents = f.read().splitlines() # List of lines
for line in contents:

print(line)
time.sleep(3) # Delays for at least 3 seconds

At the end of the with block, the file is closed automatically, but the contents
variable lives on.
Other methods for reading text files include readline() and readlines().
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3.3.2.2 Writing a Text File A text file can be written to a file opened in modes
"w" (i.e., overwrite), "a" (i.e., append), and "r+" (i.e., read and write). Suppose one
wanted to append the text “—Hamlet, act III, scene I” as a new line to hamlet.txt.
The following would achieve this aim:

attribution = "\n---Hamlet, act III, scene I"
with open("hamlet.txt", mode="a"):

f.write(attribution)

Another useful method for writing to a file is the writelines()method, which
writes a list of strings to the file.

3.3.3 JSON Files

JavaScript Object Notation (JSON) is a text file data format that is often used to
store and share data in a form that is not specific to any programming language.
JSON data types include:

• Numbers: signed decimal numbers (e.g., 4, 8.0, and 5e-3)
• Strings: sequences of Unicode characters in double quotation marks (e.g.,
"A string")
• Booleans: values of true and false
• Arrays: ordered collections of elements between brackets [], comma-
separated (e.g., [3.1, 9, "foo"])
• Objects: unordered collections of key-value pairs between braces {}, comma-
separated; for instance,

{
"name": "Rick Sanchez",
"occupation": "Scientist",
"minimum age": 70,
"grandchildren": ["Morty", "Summer"]

}

A JSON file name conventionally ends with a .json extension.
The reading and writing of JSON files with Python can be done with the standard

library jsonmodule, which can be loaded with the following statement:

import json

3.3.3.1 Reading Python reads JSON types and converts them into similar Python
types. The conversions are summarized in table 3.1.

Table 3.1: JSON to Python reading conversion.

From JSON object array string number (int) number (real) true false null
To Python dict list str int float True False None
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Let’s say a JSON file rick.json has the JSON object describing Rick Sanchez
from above. We can load it in with the following code:

with open("rick.json", "r") as f:
data = json.load(f)

The base object is converted to a dict and assigned to the variable data. If we print
data it will appear as follows:

{"grandchildren": ["Morty", "Summer"],
"minimum age": 70,
"name": "Rick Sanchez",
"occupation": "Scientist"}

Here "Rick Sanchez" is a Python str, 70 is a Python int, and ["Morty", "Summer"]
is a Python list of strings.

3.3.3.2 Writing When writing a JSON file, Python converts its own types to
similar JSON types. The conversions are summarized in table 3.2.

Table 3.2: Python to JSON writing conversion.

From Python dict list, tuple str int, float True False None
To JSON object array string number true false null

Suppose we would like to write the following data dict to a JSON file:

acceleration = 9.81
time = np.linspace(0, 1, 11)
velocity = acceleration * time
position = acceleration/2 * time ** 2
data = {

"time": time.tolist(),
"acceleration": acceleration,
"velocity": velocity.tolist(),
"position": position.tolist()

}

Note that we have used the np.ndarraymethod tolist() to convert the arrays
to lists. This is necessary because Python cannot convert arrays directly to JSON.
The following pattern will write the JSON file kinematics.json:

with open("kinematics.json", "w") as f:
json.dump(data, f)

The JSON file can now be shared or read into another program at a later time.
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3.3.4 CSV Files

Another common format for sharing data is the venerable comma-separated value
(CSV) text file. There are several flavors of CSV files, butmost have a 2D tabular form
with commas separating values (and columns) in a record (i.e., row) and newline
characters separating records. There are similar delimiter-separated value text files
that use delimiters other than commas to separate values; common delimeters
include the tab character \t and the colon :.
Python has the standard library module csv for reading and writing such files. It

is imported with the statement

import csv

3.3.4.1 Reading Reading a CSV file data.csv to a list of lists can be achieved
with the following code:

with open("data.csv", 'r') as f:
data = list(csv.reader(f, delimiter=","))

For files with other delimeters, the delimiter argument can be used to pass the
appropriate delimiter. To convert the list data to a NumPy array, the usual
np.array() function can be used.

3.3.4.2 Writing Although we usually prefer to write arrays to JSON files
(section 3.3.3) or NumPy files (section 3.3.5),3 occasionally we need to write a
CSV file. The following code will write a list of lists to a CSV file:

data = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] # Data to save
with open("data.csv", "w") as f:

writer = csv.writer(f, delimiter=",")
writer.writerows(data)

To write a NumPy array A to a CSV file, first convert it to a list with A.tolist().

3.3.5 NumPy Input and Output

NumPy has its own file reading and writing capabilities. We consider only its array
reading and writing capabilities because we find them the most useful.

3.3.5.1 The .npy File A NumPy array can be stored in a .npy file, which is a
binary file, a file that is encoded and decoded differently than text files. A .npy
file is usually more compact than a text file (e.g., JSON) storing the same array.
Similarly, the time it takes to save and load a .npy file is usually much less than for

3. JSON is preferred for its capability of storing more complex data structures (e.g., dictionaries and
deeply nested lists) and strict standardization. NumPy .npy and .npz files are preferred for their
capability of storing multidimensional arrays, stricter standardization, and potential for compression.
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a text file storing the same array. Furthermore, unlike for text files, no additional
processing (e.g., converting to and from lists) is required for the reading and writing
of .npy files. Therefore, it is often best to save and load arrays to .npy files instead
of to text files. However, a text file, especially a JSON file, is the best choice for
compatibility.
The following statements save a NumPy array A to a .npy file:

with open("A.npy", "wb") as f:
np.save(f, A, allow_pickle=True)

The file was opened in "wb" or “write binary” mode; here the b is required to write
binary files.
The allow_pickle argument, by default True, toggles the use of Python pickling

(see section 3.3.6) for object arrays (i.e., NumPy arrays with nonnumeric objects).
An object array cannot be saved without pickling.
The following statements load a NumPy array from a .npy file:

with open("A.npy", "rb") as f:
A = np.load(f, allow_pickle=False)

The allow_pickle argument is by default False due to security and compatibility
issues with loading pickled object arrays. Passing allow_pickle=False allows the
loading of trusted object array .npy files.

3.3.5.2 The .npz File Multiple NumPy arrays can be saved to and loaded from
a .npz file. The following statements save NumPy arrays A and B to a .npz file:

with open("data.npz", "wb") as f:
np.savez(f, A=A, B=B)

The arguments following the file f of the np.savez() do not have to be named, but
if they are the name is saved in the .npz file. Otherwise, default names are used.
The following statements load NumPy arrays A and B from a .npz file:

with np.load("data.npz", allow_pickle=False) as data:
A = data["A"]
B = data["B"]

Here we have temporarily loaded the data and accessed each array with dictionary
syntax, assigning it to variables A and B that survive the with block.
In addition to np.savez(), there is the similar np.savez_compressed() func-

tion that attempts to compress the .npz file. For certain types of data, this can
reduce the file size significantly at the cost of the compression time elapsed during
saving and the decompression time elapsed during loading.
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3.3.6 Pickle Files

The standard library module pickle can be used to save and load binary pickle
files, conventionally with the extension .pickle. There are a few disadvantages to
using pickle files instead of other methods described in this section for storing data:

• Pickle files are Python-specific
• Pickle files can depend on the version of Python used to create them
• Pickle files are a security risk, so do not load an untrusted pickle file
• Pickle files are not human-readable because they are binary
• Saving and loading pickle files is usually slower than NumPy for arrays

However, there are some distinct advantages as well:

• Many custom class objects can be pickled
• Pickle files are compact
• No external packages are required to save and load pickle files
We prefer to use them only when other methods will not work or are clumsy

(e.g., when the object to be saved is an instance of a custom class).
The pickle module can be loaded with the following statement:

import pickle

3.3.6.1 Reading A pickle file data.pickle can be loaded with the following
code:

with open("data.pickle", "rb") as f:
data = pickle.load(f)

If multiple objects were stored in the pickle file, additional calls to pickle.load()
will load them in the order they were pickled. Often, we will assemble all objects to
be pickled into a single object like a tuple or a dict, in which case each object can
be given a name (key).

3.3.6.2 Writing Objects foo and bar can be written to a pickle file data.pickle
with the following code:

with open("data.pickle", "wb") as f:
pickle.dump((foo, bar), f) # Bundled into a tuple

Here we have bundled foo and bar into a single tuple so a single pickle.load()
call returns all the data. Alternatively, we could have bundled them in a dict like
{"foo": foo, "bar": bar), or we could have simply called pickle.dump()
multiple times to save multiple objects in the same file.
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3.4 Introducing Graphics LINK
SY

The graphical presentation of numerical data is perhaps the most
important output of an engineering computing program. We must
begin by understanding the purpose of graphics:

Graphics reveal data. (Tufte 2001; p. 13)

Data can, of course, be presented in other ways. Small sets of data are sometimes
best presented in table format. However, most data is best presented visually.
Good graphics require careful design. The following list characterizes some

aspects of a quality graphic (p. 13):

• It shows the data
• It draws the viewer to the data, not its presentation
• It presents the truth of the data with minimal distortion
• It presents lots of data in a small space
• It makes understandable large data sets
• It draws the viewer to compare pieces of the data set
• It presents the data in important levels of detail (broad and fine)
• It has a clear purpose: description, exploration, tabulation, or decoration
• It is closely integrated with accompanying descriptions of the data set
A good graphic is an explanation. For instance, it explains how one variable is

related to another. In some cases, a causal explanation is suggested, as in figure 3.2,
which suggests economic elites have much greater influence on policy adoption
than do average citizens.
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Figure 3.2. Percent predicted probability of public policy adoption for economic elites
and average citizens. Study, results, and statistical model by Gilens and Page (2014).

https://engineering-computing.ricopic.one/sy
https://engineering-computing.ricopic.one/sy
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A powerful Python package for creating graphics is Matplotlib (Hunter 2007). It
is included in the base Anaconda environment and its most important module can
be loaded with the following statement:

import matplotlib.pyplot as plt

In this book, we will use plt as the name for this module.
The rest of this section introduces the three fundamental types of graphics: func-

tion graphs, plots, and charts. Several important Matplotlib functions and methods
are presented for generating each fundamental type of graphic.

3.4.1 Function Graphs

A function graph is a graphic that displays the relationship between a function
and one or more of its arguments. A single 2D function graph can display the
relationship between a function and a single argument. For instance, consider the
polynomial function

5 (G)= 04G
4 + 03G

3 + 02G
2 + 01G + 00 ,

for real constant coefficients 00 , · · · , 04. To visualize the function for a given set of
coefficients,

00 , · · · , 04 = 10, 10,−20,−1, 1,

we could write a Python program that begins by defining the function 5 as a Python
function as follows:

def f(x):
a0, a1, a2, a3, a4 = 10, 10, -20, -1, 1
return a4 * x ** 4 + a3 * x ** 3 + a2 * x ** 2 + a1 * x + a0

Our strategy is to create two NumPy arrays, one for values of G and another for
corresponding values of H = 5 (G). These values should cover the domain of interest;
for instance,

x = np.linspace(-5, 5, 101)
y = f(x)

The following code will create a figure and an axis, plot x and y on the axis, set
the G-axis and H-axis labels, and display the figure:

fig, ax = plt.subplots() # Create a figure and an axis
ax.plot(x, y)
ax.set_xlabel("x") # Label the G axis
ax.set_ylabel("f(x)") # Label the H axis
plt.show() # Display the figure

Consider each of the lines and what it does:
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• fig, ax = plt.subplots() This function returns two objects with funda-
mental Matplotlib classes: the figure class matplotlib.figure.Figure and
the axes class matplotlib.axes.Axes. Figures are the top-level containers
for all elements in a Matplotlib graphic. Axes are the containers for individual
plots and subplots, multiple of which can be contained in a single figure.
• ax.plot(x, y) This axes method plots y versus x, drawing a continuous
curve connecting the points (G8 , H8). There are many optional arguments we
will later explore, but the defaults will suffice for this example.
• ax.set_xlabel("x") This axes method sets the G-axis label to the string
argument.
• ax.set_ylabel("f(x)") This sets the H-axis label.
• plt.show() This function displays all open figures. In an IPython session
(e.g., one in Spyder), this is superfluous because figures are automatically
displayed in this environment.

The execution of this code displays a figure similar to the stylized version shown
in figure 3.3.4 Note that although Matplotlib connects the individual points (G8 , H8)
on the curve with straight lines, with enough points the curve appears smooth.

−4 −2 0 2 4
G

−100

0

100

200
5 (G)

Figure 3.3. A graph of polynomial 5 (G).

AMatplotlib figure can contain multiple axes objects and each axes object can
contain multiple plots. We will explore the former in a later section and the latter in
section 3.4.2.

4.We will later explore how to style and save figures. The stylization of book figures will be minimal
but necessary to demonstate the aesthetic cohesion with the text for which we should strive.



Numerical Analysis I: Representations, Input and Output, and Graphics 77

3.4.2 Plots

Aplot is a graphic that displays discrete data in relation to one ormore coordinates in
a coordinate system. Consider a data set, a set of data points, =-tuples (G08 , · · · , G=8),
in a coordinate system (G0 , · · · , G=). A plot of the data set would display each of the
data points in the data set. For instance, a plot of a data set in a Cartesian coordinate
system (G, H)would display each of the data points (G8 , H8) in the data set.
You may have observed that to create a function graph in section 3.4.1 we gener-

ated a data set of Cartesian data points (G8 , H8) and actually created a plot of that
data set. It turns out that a function graph is really just a plot that tries to minimize
the appearance of individual data points to emphasize the continuously varying
nature of the function it is presenting. On the other hand, plots that are not function
graphs should usually emphasize its data points.
Experimental data are frequently presented in plots. For example, consider a data

set collected in an experiment exploring the relationship among the pressure %,
volume + , and temperature ) of a noble gas. You may recall that noble gases are
good approximations of an ideal gas, which obeys the ideal gas law

%+ = ='),

where = is the (molar) amount of gas and ' is the ideal gas constant (approximately
8.314 J/(K·mol)). Our Engcom package datamodule simulates this data set; the
module can be imported with the following statement:

import engcom.data

A data set can be generated for values of volume V and temperature Twith the
following function call:

d = engcom.data.ideal_gas(
V=np.linspace(1, 2, 16), # (m^3) Volume values
T=np.linspace(273, 573, 4), # (K) Temperature values

)

Now d is a dictionary with the following key–value pairs:
• "volume"–+16×1 (m3)
• "temperature"–)1×4 (K)
• "pressure"–%16×4 (Pa)

We would like to plot % versus + for each of the 4 temperatures ); that is,
plot a sequence of pairs (%8 , +8) for each )9 . The following code loops through
the temperatures and plots to the same axes object:
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fig, ax = plt.subplots()
for j, Tj in enumerate(d["temperature"].flatten()):

x = d["volume"] # (m^3)
y = d["pressure"][:,j] / 1e6 # (MPa)
ax.plot(x, y, marker="o", color="dodgerblue") # Circle markers
ax.text(x=x[-1], y=y[-1], s=f"$T = {Tj}$ K") # Label last point

Finally, we label the axes and display the figure with the following code:

ax.set_xlabel("Volume (m$^3$)")
ax.set_ylabel("Pressure (MPa)")
plt.show()

The figure should appear as shown in figure 3.4.
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Figure 3.4. Ideal gas pressure versus volume for different temperatures.

Note the practice of labeling the individual data plots instead of creating a separate
legend. At times a legend is necessary, but often it is better to simply label the data
so the viewer needn’t perform unnecessary work moving back-and-forth between
the legend and the plot.
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3.4.3 Charts

The third fundamental type of graphic is the chart: a data set presentation in which
signs (i.e., icons, indices, and symbols)5 represent data. Some signs have become
commonplace for representing data:

• The dot • represents a data point
• The curve represents a continuously varying quantity or a connec-
tion between sequential data points
• The bar represents a quantity via its length

A function graph (section 3.4.1) represents a continuously varying quantity with
a curve. A plot (section 3.4.2) represents data points with dots and connections
among sequential data points with curves. The chart can use dots, curves, bars,
or any other sign to represent data. Therefore, “chart” is the most general term: a
function graph is a type of plot, which is a type of chart.
There aremany flavors of chart in addition to the function graph and plot. Perhaps

themost important are variations on the bar chart and the related histogram, covered
here.

3.4.3.1 Bar Charts A bar chart represents and compares quantities of some type
(e.g., density) for a collection of discrete categories (e.g., liquids). The categories
may have a natural progression, in which case they should be ordered accordingly;
otherwise, they should be ordered by quantity.
Consider the bar chart of thermal conductivity for various metals shown in

figure 3.5. The quantity charted is thermal conductivity and the categories are types
of metal. Note that not only can we easily see the conductivity of each metal, we
can easily compare conductivities in this graphic. A simple table of data would be
much less informative in this regard.

5. The field of semiotics (the study of signs) defines a sign as something that communicates a meaning.
Charles Sanders Peirce distinguished three types of signs in terms of a sign’s relation to its object: an
icon has a topographical similarity with its object (e.g., ☽ is an icon representing a waxing moon), an
index indicates something else (e.g., ↑ points to something), and a symbol is a sign for an object only by
convention (e.g., ☣ is the biohazard symbol). The type of a given sign can be ambiguous (e.g., ☜ is an
icon insofar as its object is a hand, but is an index insofar as it indicates the direction left).
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Figure 3.5. A bar chart of thermal conductivity for metals (data from Carvill (1994)).

We can produce the bar chart of figure 3.5 as follows. Begin by loading packages:

import numpy as np
import matplotlib.pyplot as plt
import engcom.data

The data can be loaded from the engcom.datamodule as follows:

d = engcom.data.thermal_conductivity(category="Metals", paired=False)
y = np.arange(len(d["labels"]))
x_alpha = d["conductivity"] # Alphabetically sorted
labels_alpha = np.array(d["labels"]) # Alphabetically sorted

The data is here sorted alphabetically. However, we prefer to sort it by quantity,
which can be achieved with the use of the np.lexsort() function as follows:
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ix = np.lexsort((labels_alpha, x_alpha)) # Sort indices
x = x_alpha[ix]
labels = labels_alpha[ix].tolist()

Now we can use Matplotlib’s ax.barh() axes method (for a vertical bar chart,
use ax.bar()) as follows:
fig, ax = plt.subplots()
ax.barh(y, x, color="dodgerblue")
ax.set_yticks(y, labels=labels)
ax.set_xlabel("Thermal conductivity (W/(m$\\cdot$K))")

In some cases we present a group of subcategories for each category, in which
case a tuple of subcategories can be passed to ax.barh() or ax.bar().
There are other ways to present this type of information (i.e., quantities for a

collection of categories), but it is difficult to do better than the bar chart.

3.4.3.2 Histograms A histogram is a chart that presents a distribution of a vari-
able. Its use of bars makes it closely related to the bar chart, but it represents the
frequency a variable falls in each bin: an interval of values treated as a category.
Consider the histogram of my movie ratings on a 0–10 scale shown in figure 3.6.

Ratings most frequently fall in the [6, 7) bin. Only two movies are in the [9, 10] bin.
With the histogram we can easily compare the relative frequencies of values.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20
Frequency

Figure 3.6. A histogram of my movie ratings on a 0–10 scale.
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We can produce the histogram chart of figure 3.6 as follows. After loading
the same packages as we did for the bar chart, the data can be loaded from the
engcom.datamodule as follows:

d = engcom.data.movie_ratings_binned()
x = list(range(0,len(d["rating_freq"])))

Now we can use Matplotlib’s ax.bar() axes method (for a horizontal histogram,
use ax.barh()) as follows:
fig, ax = plt.subplots()
ax.bar(x, d["rating_freq"], color="dodgerblue", width=.9)
ax.set_xticks(x)
ax.set_xticklabels(d["labels"])
ax.set_xlabel("Rating out of $10$")
ax.set_ylabel("Frequency")

Note that Matplotlib does have a hist() function that can make generating
histograms slightly easier. However, we prefer the flexibility of the bar()method.

3.4.3.3 Other Types of Charts
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3.5 Problems LINK
A5

Problem 3.1 LINKJ3 Write a program that meets the following requirements:

a. It constructs a NumPy matrix A to represent the following mathematical
matrix:

�=

[
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19

]
.

b. It defines a function left_up_sum(A: np.ndarray) -> np.ndarray that
adds the component (element) to the left and the component above (wrap-
ping, if necessary) to each component. The function should pass through
the array once, row-by-row, and return a new array. The function should be
able to handle any size of matrix.

c. It defines a function left_up_sums(A: np.ndarray, n: int) -> np.ndarray
that executes left_up_sum() n times and returns a new array.

d. It calls left_up_sums() on A and prints the returned array for the following
values of n: 0, 1, 4.

Problem 3.2 LINKZF The inner product of two real =-vectors x and y is defined as

〈x , y〉 =
=−1∑
8=0

G8H8 .

The result is a scalar. The np.inner() and np.dot() functions can be used in
NumPy to find the inner product of two vectors of the same size. In this problem,
we will write our own function that computes the real inner product even if they
are of different sizes. Write a program that meets the following requirements:

a. It defines a function

inner_flat_trunc(x: np.ndarray, y: np.ndarray) -> float

that returns the truncated inner product of vectors a and b even if the sizes
of the vectors do not match by using a truncated version of the one that is
too long. The function should handle any shape of input arrays by using
the flatten() method before truncating and taking the inner product.
If both input arrays do not have dtype attribute np.dtype('float') or
np.dtype('int'), the function should raise a TypeError exception.

b. It calls inner_flat_trunc() on the following arrays:
i. A pair of arrays from the lists:

[-1.1, 3, 2.9, -1, -9.2, 0.1] and [1.3, 0.2, 8.3]

https://engineering-computing.ricopic.one/a5
https://engineering-computing.ricopic.one/a5
https://engineering-computing.ricopic.one/j3
https://engineering-computing.ricopic.one/zf
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ii. An array of the integers from 0 through 13 and an array of the integers
from 3 through 12

iii. An array of 21 linearly spaced elements from 0 through 10 and an
array of 11 linearly spaced elements from 5 through 25.

iv. A pair of arrays of elements from the lists [True, False, True]
and [0, 1, 2] (handle the exception in the main script so it runs
without raising the exception)

Problem 3.3 LINK3H Consider the following mathematical matrices and vectors:

�=


2 1 9 0
0 −1 −2 3
−3 0 8 −4

 �=


0 9 −1
1 0 3
0 −1 1

 x =


1
0
−1

 y=
[
3 0 −1

]
. (3.1)

Write a program that meets the following requirements:

a. It defines NumPy arrays to represent �, �, (column vector) x, and (row
vector) y.

b. It computes and prints the following quantities:

i. ��

ii. �>�− 6�4×3, where �4×3 is the 4× 3 matrix of all 1 components
iii. �x + y>
iv. xy+ �
v. yx
vi. y�−1x
vii. ��, where � is the 3× 3 submatrix of the first three columns of �

Problem 3.4 LINKDI Consider the array:

a = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) # 4x3

Write a program that performs and prints the results of the following operations on
a without using for loops:
a. Adds 1 to all elements
b. Adds 1 to the last column
c. Flattens a to a vector
d. Reshapes a into a 3× 4 matrix
e. Adds the vector [1, 2, 3] to each row
f. Adds the vector [1, 2, 3, 4] to each column
g. Reshapes a to a column vector
h. Reshapes a to a row vector

Problem 3.5 LINKQX Write vectorized Python functions that operate element-wise
on array arguments for the following mathematical functions:

https://engineering-computing.ricopic.one/3h
https://engineering-computing.ricopic.one/di
https://engineering-computing.ricopic.one/qx
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a. 5 (G)= G2 + 3G + 9
b. 6(G)= 1+ sin2 G

c. ℎ(G, H)= 4−3G + ln H
d. �(G, H)= bG/H

⌋
e. �(G, H)=

{
G2 + H2 if G > H

2G otherwise

Problem 3.6 LINKDN Write a program that graphs each of the following functions
over the specified domain:

a. 5 (G)= tanh(4 sin G) for G ∈ [−5, 8]
b. 6(G)= sin

√
G for G ∈ [0, 100]

c. ℎ(G)=
{

0 if G < 0

4−G sin(2�G) otherwise
for G ∈ [−2, 6]

Problem 3.7 LINKWF Write a program that loads and plots ideal gas data with the
engcom.data.ideal_gas() function in the following way:
a. The data it loads is over the volume domain: + ∈ [0.1, 2.1]m3

b. The data it loads has 3 temperatures: + = 300, 400, 500 K
c. It plots in a single graphic % versus + for each of the three temperatures
d. Each data point should be marked with a dot •
e. Sequential data points should be connected by straight lines
f. Each plot should be labeled with its corresponding temperature, either next

to the plot or in a legend

Problem 3.8 LINKY1 Use the data from problem 3.7 to write a program that meets
the following requirements:

a. It loads the pressure-volume-temperature data from problem 3.7.
b. It estimates the work , done by the gas for each of the three values of

temperatures via the integral equation

, =−
∫ 2.1

0.1
%(+) 3+.

Note: An integral can be estimated from discrete data via the trapezoidal
rule, which can be executed with NumPy’s np.trapz() function.

c. It generates a bar chart comparing the three values of work (one for each
temperature).

Problem 3.9 LINKKG Write a program to bin data and create histogram charts that
meets the following requirements:

a. It defines a function

https://engineering-computing.ricopic.one/dn
https://engineering-computing.ricopic.one/wf
https://engineering-computing.ricopic.one/y1
https://engineering-computing.ricopic.one/kg
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binner(A: np.ndarray, nbins: int) -> (np.ndarray, np.ndarray)

that accepts an array A of data and returns an array for the frequency of the
data in each bin and an array of the bin edges. Consider the following details:

i. The bin edges should include the left edge and not the right edge,
except the rightmost, which should include the right edge (“left” and
“right” here mean lesser and greater).

ii. The bins should be of equal width.
iii. Give a default value (e.g., 10) for the nbins argument.
iv. Do not use the (nice) functions np.histogram() or plt.hist() for

this exercise.

b. It defines a function histogram(A: np.ndarray, nbins: int) that calls
binner() and plt.bar() to generate a histogram chart.

c. It loads all of the thermal conductivity data from the engcom.datamodule
with the engcom.data.thermal_conductivity() function.

d. It generates 3 histograms, one for each of the following material categories
(key): "Metals", "Liquids", and "Gases". Be sure to properly label the
axes.

Problem 3.10 LINKWJ You will now create life. John Conway’s Game of Life is a
cellular automata game that explores the notion of life. In this problem, you will
write a program for the game, which is played on a 2D grid. The grid is composed
of elements called cells, each of which can be either alive or dead at a given moment.
The rules of the game are simple (Johnston and Greene 2022):

• If a cell is alive, it survives to the next generation if it has 2 or 3 live neighbors;
otherwise it dies.
• If a cell is dead, it comes to life in the next generation if it has exactly 3 live
neighbors; otherwise it stays dead.

The neighbors of a cell are those eight cells adjacent to it (including diagonals).
Write a program for playing the game of life that meets the following require-

ments:

a. It defines a function

game_of_life(A: np.ndarray)

that accepts a matrix A that encodes the starting state for the game. Use 1
to signify an alive cell and 0 to signify a dead cell. Consider the following
details:

i. The game is traditionally played on an infinite grid. However, your
program should play the game of life on a torus (doughnut) made
from sewing the opposite edges of the starting state A grid. For

https://engineering-computing.ricopic.one/wj
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instance, the neighbors above a cell in the top row are on the bottom
row (i.e., neighbors wrap).

ii. A visualization is required. A very useful Matplotlib function here is
plt.matshow(A), whichwill display the numerical values of amatrix
in a grid. For instance, try the following:

plt.matshow([[0,1,1],[1,0,1],[0,0,1]])

iii. Strongly consider using additional functions to define operations like
“evolve one generation,” “kill,” “animate,” and “visualize.”

b. It calls game_of_life() on matrices corresponding to the following starting
states:

i. A 5× 5 grid of cells with the following pattern (blinker):
0 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0


ii. A 20× 20 grid of cells, all dead (0) except a group near the center with

the following pattern (glider):
0 1 0
0 0 1
1 1 1


iii. A 40× 40 grid of cells, all dead (0) except a group near the center with

the pattern that can be loaded as a list from the engcom.datamodule
with the function call
engcom.data.game_of_life_starts("gosper_glider")

Problem 3.11 LINKR9 In robotic path planning, it is often important to know if a
given point (e.g., a potential location of the robot) is inside of a given polygon (e.g.,
a shape representing an obstacle). On a plane, a polygon can be defined by a list
of = points (G8 , H8) representing the vertices of the polygon %. One algorithm for
determining if a given point ' is in % is called the winding number algorithm,
which computes the winding number $ as the sum of the angles �8 between the
vectors from ' to consecutive vertices %8 and %8+1 of the polygon, denoted r8 and
r8+1, as shown in figure 3.7. In other words,

$=
1

2�

=−1∑
8=0

�8 . (3.2)

https://engineering-computing.ricopic.one/r9
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%8

%8+1

r8

r8+1

�8

'

Figure 3.7. A polygon and vectors from ' to two consecutive vertices.

It can be shown that if the winding number is 0, then ' is outside the polygon;
otherwise, it is inside. The angle )8 of vector r8 = [A8G , A8H ] is

)8 = arctan(A8H/A8G ),
where we should use np.atan2(riy, rix) for computation. The difference
between the angles of two consecutive vectors is

�8 =)8+1 −)8 where |�8 ≤ �|.
The bound |�8 ≤ �|must be enforced because the acute angle is used in equation (3.2),
so if )8+1 −)8 <−�, we should add 2� and if )8+1 −)8 >�, we should subtract 2�.
Write a program that meets the following requirements:

a. It defines a Polygon class that is constructed with instance attribute
vertices, a list of (G8 , H8) coordinate tuples defining the vertices of the
polygon.

b. The Polygon class has a method plot() that plots the polygon as a closed
curve. If a point R is passed to the plot() method, it should appear as a
single point on the plot.

c. The Polygon class has a method is_inside(R) that checks if the point
R (a tuple) is inside the polygon using a winding number algorithm. The
method should return True if R is inside the polygon and False otherwise.
Additional methods can be added to help with the computation of angles
and other intermediate quantities.
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d. It tests the Polygon class with the following polygons and points, testing if
the points are inside the polygon and plotting the polygon with the points:

i. % = [(5, 1), (2, 3), (−2, 3.5), (−4, 1), (−2, 1.5), (−2,−2), (−5,−3), (2,−2.5),
(5.5,−1)] and the points '1 = (0, 0) and '2 = (−4, 0)

ii. % = [(4, 1), (1, 2), (−1, 1), (−4, 2), (−5,−2), (−3,−2), (−5,−3), (2,−2),
(5,−2)] and the points '1 = (0, 0) and '2 = (−4, 0)

Restriction: Use only the NumPy and Matplotlib packages.





4 Symbolic Analysis LINK
WE

A symbolic analysis, sometimes called “analytic” as opposed to “numerical,” is one
that manipulates symbols called symbolic variables, which represent quantities. In
symbolic analysis, variables of interest are solved for by means of techniques from
all branches of mathematics. For engineering symbolic analysis, of particular impor-
tance are the mathematical techniques of geometry, algebra, calculus, analysis,1

discrete mathematics, logic, set theory, probability, and statistics.
Applied to an engineering problem, the techniques of these branches of math-

ematics often yield symbolic solutions (also called “analytic” solutions), exact
solutions for symbolic variables. However, there are many problems for which
symbolic solutions do not exist, are unknown, are difficult to obtain, or would
yield little insight into the problem (e.g., when the solution cannot be expressed
simply). In such cases, the techniques of numerical analysis (chapter 5) are indicated.
For those problems with nice symbolic solutions (i.e., those that can be expressed
simply and can be obtained without exorbitant work), there are distinct advantages
to finding symbolic solutions:

1. Symbolic solutions have provable properties (e.g., stability and bounds)
2. Symbolic solutions give designers insight into the ways design parameters

affect performance (e.g., increasing the mass of this component will reduce a
vibration output)

3. Symbolic solutions are much more general than numerical solutions, which
are only valid for a specific set of parameters, initial conditions, boundary
conditions, etc.

Computers have the ability to manipulate symbolic variables and the expressions
and functions associated with them. Software designed for this purpose is called a
computer algebra system (CAS). Many of the techniques from the mathematics
curriculum of an engineering degree are available in CASs. Popular CASs include

1. The mathematical field of analysis includes real analysis, complex analysis, differential equations, and
vector analysis. Analysis developed from calculus.

https://engineering-computing.ricopic.one/we
https://engineering-computing.ricopic.one/we
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Mathematica, Maple, the Symbolic Math Toolbox of MATLAB, SageMath, and the
SymPy package of Python. Although most of these have an application program-
ming interface (API) for Python, the only one that is exclusively written in and for
Python is the SymPy package, and therefore we will use this as our CAS.
The SymPy package is available in the base Anaconda environment. It can be

imported in a program with the following statement:

import sympy as sp

We use the alias sp throughout the text.

4.1 Symbolic Expressions, Variables, and Functions LINK
YA

In SymPy, a symbolic expression is comprised of SymPy objects.
Unlike numerical expressions, these are not automatically evaluated
to integer or floating-point numbers. For instance, using the standard library math
module, the expression math.sqrt(3)/2 immediately evaulates to the floating-
point approximation of about 0.866. However, in SymPy, something else happens:2

sp.sqrt(3) / 2
√

3
2

This is an exact representation of the mathematical expression, as opposed to the
approximation obtained previously.
A symbolic expression can be represented as an expression tree:

sp.srepr(sp.sqrt(3) / 2) # Show expression tree representation

'Mul(Rational(1, 2), Pow(Integer(3), Rational(1, 2)))'

This can be visualized as a tree graph like that shown in figure 4.1.

2.We are pretty printing results that are mathematical expressions.

https://engineering-computing.ricopic.one/ya
https://engineering-computing.ricopic.one/ya
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Mul

Rational

1 2

Pow

3 Rational

1 2

Figure 4.1. A symbolic expression tree for sp.sqrt(3)/2.

4.1.1 Symbolic Variables

Mathematical variables can be represented as symbolic variables that stand in for
an unspecified number. In SymPy, symbolic variables can be created as follows:

x, y = sp.symbols("x, y", real=True) # Create two real variables

The string passed to sp.symbols() can separate variables with commas and/or
whitespace. The type of unspecified number being represented by the symbolic
variables listed is assumed to be complex unless an optional argument is passed
declaring otherwise. Here we have declared that x and y are real with the predicate
real. Other common predicates include the following:
• Integers: integer, noninteger, even, and odd
• Real numbers: real, positive, nonnegative, nonzero, nonpositive, and
negative
• Complex numbers: complex (default) and imaginary
The predicate of a symbolic variable determines the assumptions SymPy will

make about it when it appears in a symbolic expression. For instance, consider the
following symbolic expressions:

z = sp.symbols("z") # Complex
p = sp.symbols("p", positive=True)
sp.sqrt(z**2)
sp.sqrt(x**2) # Using real x from above
sp.sqrt(p**2)
√
I2

|G |
?
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We see that the expression automatically simplifies based on the predicates provided
for each variable. This will prove especially useful once we begin using the symbolic
expression manipulation techniques described in the following sections.

4.1.2 Symbolic Functions

A mathematical function can be represented in SymPy by a symbolic function.
There are a few different ways to create these, andwewill consider only the simplest
and most common cases here. An undefined function 5 that should be treated as
monolithic and as having no special properties can be defined as follows:

f = sp.Function("f") # Type: sp.core.function.UndefinedFunction
f(x) + 3 * f(x) # Using x from above

4 5 (G)
Predicates can be applied to functions, as well; for instance,

g = sp.Function("g", real=True)
f(x) + g(x, y) * g(3, -3)

5 (G) + 6(3,−3)6(G, H)
An applied undefined function is an undefined function that has been given an

argument. For instance,

h = sp.Function("h")(x) # Types: h, sp.core.function.AppliedUndef
3 * h ## Leave off the argument

3ℎ(G)
Undefined functions are never evaluated. At times we want to define a function

that is always to be evaluated; in SymPy such a function is called a fully evaluated
function. A fully evaluated function can be created as a regular Python function, as
in the following case:

def F(x):
return x**2 - 4

F(x)**2(
G2 − 4

)2

For piecewise functions, regular Python functions with if statements will work,
but it is preferable to use the sp.Piecewise() function. For instance,

G = sp.Piecewise(
(x**2, x <= 0), # G2 for G ≤ 0
(3*x, True) # 3G for G > 0

)

Many common mathematical functions are built in to SymPy, including those
shown in table 4.1.
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Table 4.1: Elementary mathematical functions in SymPy.

Kind SymPy Functions (sp. prefix suppressed)

Complex Abs(), arg(), conjugate(), im(), re(), sign()
Trigonmetric sin(), cos(), tan(), sec(), csc(), cot()
Inverse Trigonometric asin(), acos(), atan(), atan2(), asec(), acsc(), acot()
Hyperbolic sinh(), cosh(), tanh(), coth(), sech(), csch()
Inverse Hyperbolic asinh(), acosh(), atanh(), acoth(), asech()
Integer ceiling(), floor(), frac() get_integer_part()
Exponential exp(), log()
Miscellaneous Min(), Max(), root(), sqrt()

In rare cases, we must define a custom function; that is, a subclass of the
sp.Function class. Such a function needs to have its behavior thoroughly defined.
Once it is completed, it should behave just as built-in functions like sp.sin(). For
a tutorial on writing custom functions, see SymPy Development Team (2023d).

4.2 Manipulating Symbolic Expressions LINK
NC

In engineering symbolic analysis, the need to manipulate, often alge-
braically, mathematical expressions arises constantly. SymPy has
several powerful tools for manipulating symbolic expressions, the most useful
of which we will consider here.

4.2.1 The simplify() Function and Method

A built-in Sympy function and method, sp.simplify(), is a common SymPy
tool for manipulation because simplification is often what we want. Recall that
some basic simplification occurs automatically; however, in many cases this auto-
matic simplification is insufficient. Applying sp.simplify() typically results in
an expression as simple as or simpler than its input; however, the precise meaning
of “simpler” is quite vague, which can lead to frustrating cases in which a version
of an expression we consider to be simpler is not chosen by the sp.simplify()
algorithm. In such cases, we will often use the more manual techniques considered
later in this section.
The predicates (i.e., assumptions) used to define the symbolic variables and

functions that appear in a symbolic expression are respected by sp.simplify().
Consider the following example:

x = sp.symbols("x", real=True)
e0 = (x**2 + 2*x + 3*x)/(x**2 + 2*x); e0 # For display
e0.simplify() # Returns simplified expression, leaves e0 unchanged

G2 + 5G
G2 + 2G

https://engineering-computing.ricopic.one/nc
https://engineering-computing.ricopic.one/nc


96 Chapter 4

G + 5
G + 2

Note that e0was slightly simplified automatically. The simplify()method further
simplified by canceling an x. The use of the method does not affect the object, so it
the same as the use of the function.
There are a few “knobs” to turn in the form of optional arguments to

sp.simplify():
• measure (default: sp.count_ops()): A function that serves as a heuristic
complexity metric. The default sp.count_ops() counts the operations in the
expression.
• ratio (default: 1.7): The maximum ratio of the measures, output out over
input inp, measure(out)/measure(inp). Anything over 1 allows the output
to be potentially more complex than the input, but it may still be simpler
because the metric is just a heuristic.
• rational (default: False): By default (False), floating-point numbers are
left alone. If rational=True, floating-point numbers are recast as rational
numbers. If rational=None, floating-point numbers are recast as rational
numbers during simplification, but recast to floating-point numbers in the
result.
• inverse (default: False): If True, allows inverse functions to be cancelled
in any order without knowing if the inner argument falls in the domain for
which the inverse holds.3 For instance, this allows arccos(cos G)→ G without
knowing if G ∈ [0,�].
• force (default: False): If True, predicates (assumptions) of the variables will
be ignored.

4.2.2 Polynomial and Rational Expression Manipulation

Here we consider a few SymPy functions andmethods that manipulate polynomials
and rational expressions.

4.2.2.1 The expand() Function andMethod The expand() function andmethod
expresses a polynomial in the canonical form of a sum of monomials. A monomial
is a polynomial with exactly one additive term. For instance,

sp.expand((x + 3)**2) ## Using the real x from above

G2 + 6G + 9

3. The usual way of defining the inverse H = arccos G is to retrict H in G = cos H to [0,�]. This is because
cos is not one-to-one (e.g., cos 0= cos 2�= 1), so its domain must be restricted for a proper inverse to
exist. The conventional choice of domain restriction to [0,�] is called the selection of a principal branch.
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We can also expand a numerator or denominator without expanding the entire
expression, as follows for (G + 3)2/(G − 2)2:
frac = (x + 3)**2/(x - 2)**2
frac.expand()
frac.expand(numer=True)
frac.expand(denom=True)
frac.expand(numer=True).expand(denom=True)

G2

G2 − 4G + 4
+ 6G
G2 − 4G + 4

+ 9
G2 − 4G + 4

G2 + 6G + 9

(G − 2)2

(G + 3)2

G2 − 4G + 4
G2 + 6G + 9
G2 − 4G + 4

There are several additional options for expand(), including:
• mul (default: True): If True, distributes multiplication over addition (e.g.,

5(G + 1)→ 5G + 5.
• multinomial (default: True): If True, expands multinomial (polynomial that
is not a monomial) terms into sums of monomials (e.g., (G + H)2→ G2 + 2GH +
H2).
• power_exp (default: True): If True, expands sums in exponents to products
of exponentials (e.g., 43+G→ 434G).
• log (default: True): If True, split log products into sums and extract log
exponents to multiplicative constants (e.g., for G, H > 0, ln(G3H)→ 3 ln G + ln H).
• deep (default: True): If True, expands all levels of the expression tree; if False,
expands only the top level (e.g., G(G + (H + 1)2)→ G2 + G(H + 1)2).
• complex (default: False): If True, collect real and imaginary parts (e.g., G +
H→<(G) +<(H) + 9(=(G) +=(H))).
• func (default: False): If True, expand nonpolynomial functions (e.g., for the
gamma function Γ, Γ(G + 2)→ G2Γ(G) + GΓ(G)).
• trig (default: False): If True, expand trigonometric functions (e.g., sin(G +
H)→ sin G cos H − sin H cos G).

4.2.2.2 The factor() Function andMethod The factor() function andmethod
returns a factorization into irreducibles factors. For polynomials, this is the reverse
of expand(). Irreducibility of the factors is guaranteed for polynomials. Consider
the following polynomial example:
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x, y = sp.symbols("x, y", real=True)
e0 = (x + 1)**2 * (x**2 + 2*x*y + y**2); e0
e0.expand()
e0.expand().factor()

(G + 1)2
(
G2 + 2GH + H2)

G4 + 2G3H + 2G3 + G2H2 + 4G2H + G2 + 2GH2 + 2GH + H2

(G + 1)2 (G + H)2

Factorization can also be performed over nonpolynomial expressions, as in the
following example:

e1 = sp.sin(x) * (sp.cos(x) + sp.sin(x))**2; e1 # Using above real x
e1.expand()
e1.expand().factor()

(sin (G) + cos (G))2 sin (G)
sin3 (G) + 2 sin2 (G) cos (G) + sin (G) cos2 (G)
(sin (G) + cos (G))2 sin (G)

There are two options of note:

• deep (default: False): If True, inner expression tree elements will also be
factored (e.g., exp(G2 + 4G + 4)→ exp((G + 2)2)).
• fraction (default: True): If True, rational expressions will be combined.

An example of the latter option is given here:

e2 = x - 5*sp.exp(3 - x); e2 # Using real x from above
e2.factor(deep=True)
e2.factor(deep=True, fraction=False)

G − 543−G(
G4G − 543) 4−G
G − 5434−G

4.2.2.3 The collect() Function and Method The collect() function and
method returns an expression with specific terms collected. For instance,

x, y, a, b = sp.symbols("x, y, a, b", real=True)
e3 = a * x + b * x * y + a**2 * x**2 + 3 * y**2 + x * y + 8; e3
e3.collect(x)

02G2 + 0G + 1GH + GH + 3H2 + 8

02G2 + G (0 + 1H + H) + 3H2 + 8

More complicated expressions can be collected as well, as in the following
example:

e4 = a*sp.cos(4*x) + b*sp.cos(4*x) + b*sp.cos(6*x) + a * sp.sin(x); e4
e4.collect(sp.cos(4*x))
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0 sin (G) + 0 cos (4G) + 1 cos (4G) + 1 cos (6G)
0 sin (G) + 1 cos (6G) + (0 + 1) cos (4G)

Derivatives of an undefined symbolic function, as would appear in a differential
equation, can be collected. If the function is passed to collect(), as in the following
example, it and its derivatives are collected:

f = sp.Function("f")(x) ## Applied undefined function
e5 = a*f.diff(x, 2) + a**2*f.diff(x) + b**2*f.diff(x) + a**3*f; e5
e5.collect(f)

03 5 (G) + 02 3

3G
5 (G) + 0 3

2

3G2
5 (G) + 12 3

3G
5 (G)

03 5 (G) + 0 3
2

3G2
5 (G) +

(
02 + 12) 3

3G
5 (G)

The rcollect() function (not available as a method) recursively applies
collect(). For instance,
e6 = (a * x**2 + b*x*y + a*b*x)/(a*x**2 + b*x**2); e6
sp.rcollect(e6, x) # Collects in numerator and denominator

01G + 0G2 + 1GH
0G2 + 1G2

0G2 + G (01 + 1H)
G2 (0 + 1)

Before collection, an expression may need to be expanded via expand().

4.2.2.4 The cancel() Function andMethod The cancel() function andmethod
will return an expression in the form ?/@, where ? and @ are polynomials that have
been expanded and have integer leading coefficients. This is typically used to
cancel terms that can be factored from the numerator and denominator of a rational
expression, as in the following example:

e7 = (x**3 - a**3)/(x**2 - a**2); e7
e7.cancel()

−03 + G3

−02 + G2

02 + 0G + G2

0 + G
Note that there is an implicit assumption here that G ≠ 0. However, the cancelation

is still valid for the limit as G→ 0.

4.2.2.5 The apart() and together() Functions and Methods The apart()
function and method returns a partial fraction expansion of a rational expression.
A partial fraction expansion rewrites a ratio as a sum of a polynomial and one or
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more ratios with irreducible denominators. It is of particular use for computing the
inverse Laplace transform. The together() function is the complement of apart().
Here is an example of a partial fraction expansion:

s = sp.symbols("s")
e8 = (s**3 + 6*s**2 + 16*s + 16)/(s**3 + 4*s**2 + 10*s + 7); e8
e8.apart() # Partial fraction expansion
e8.apart().together().cancel() # Putting it back together

B3 + 6B2 + 16B + 16
B3 + 4B2 + 10B + 7
B + 2

B2 + 3B + 7
+ 1+ 1

B + 1
B3 + 6B2 + 16B + 16
B3 + 4B2 + 10B + 7

4.2.3 Trigonometric Expression Manipulation

Aswe saw in section 4.2.2, expressions including trigonometric terms can bemanipu-
lated with the SymPy functions and methods that are nominally for polynomial and
rational expressions. In addition to these, considered here are two important SymPy
functions andmethods for manipulating expressions including trigonometric terms,
with a focus on the trigonometric terms themselves.

4.2.3.1 The trigsimp() Function and Method The trigsimp() function and
method attempts to simplify a symbolic expression via trigonometric identities. For
instance, it will apply the double-angle formulas, as follows:

x = sp.symbols("x", real=True)
e9 = 2 * sp.sin(x) * sp.cos(x); e9
e9.trigsimp()

2 sin (G) cos (G)
sin (2G)

Here is a more involved expression:

e10 = sp.cos(x)**4 - 2*sp.sin(x)**2*sp.cos(x)**2 + sp.sin(x)**4; e10
e10.trigsimp()

sin4 (G) − 2 sin2 (G) cos2 (G) + cos4 (G)
cos (4G)

2
+ 1

2
The hyperbolic trignometric functions are also handled by trigsimp(), as in the

following example:

e11 = sp.cosh(x) * sp.tanh(x); e11
e11.trigsimp()



Symbolic Analysis 101

cosh (G) tanh (G)
sinh (G)

4.2.3.2 The expand_trig() Function The sp.expand_trig() function applies
the double-angle or sum identity in the expansive direction, opposite the direction
of trig_simp(); that is,

e12 = sp.cos(x + y); e12
sp.expand_trig(e12)

cos (G + H)
− sin (G) sin (H) + cos (G) cos (H)

4.2.4 Power Expression Manipulation

There are three important power identities:

G0G1 = G0+1 for G ≠ 0, 0, 1 ∈C (4.1)

D2E2 = (DE)2 for D, E ≥ 0 and 2 ∈R (4.2)

(I3)= = I3= for I, 3 ∈C and = ∈Z. (4.3)

Equations (4.1) to (4.3) are applied in several power expression simplification
functions and methods considered here.

4.2.4.1 The powsimp() Function and Method The powsimp() function and
method applies the identities of equations (4.1) and (4.2) from left-to-right (replacing
the left pattern with the right). It will only apply the identity if it holds. Consider
the following, applying equation (4.1):

x = sp.symbols("x", complex=True, nonzero=True)
a, b = sp.symbols("a, b", complex=True)
e13 = x**a * x**b; e13
e13.powsimp()

G0G1

G0+1

Applying equation (4.2),

u, v = sp.symbols("u, v", nonnegative=True)
c = sp.symbols("c", real=True)
e14 = u**c * v**c; e14
e14.powsimp()
D2E2

(DE)2
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Under certain conditions (i.e., 2 ∈Q, a literal rational exponent), equation (4.2) is
applied right-to-left automatically, so powsimp() appears to have no effect. For
instance,

e15 = u**3 * v**3; e15
e15.powsimp()

D3E3

D3E3

For expressions for which the conditions for an identity does not hold, it can still
be applied (at your own risk) via the force=True argument.

4.2.4.2 The expand_power_exp() and expand_power_base() Functions The
expand_power_exp() function applies equation (4.1) from right-to-left (opposite
of powsimp()), as follows:
e16 = x**(a + b); e16
sp.expand_power_exp(e16)

G0+1

G0G1

Similarly, expand_power_base() applies equation (4.2) from right-to-left (oppo-
site of powsimp(), as follows:
e17 = (u * v)**c; e17
sp.expand_power_base(e17)

(DE)2
D2E2

Again, the identity will not be applied if its conditions do not hold for the
expression; however, with the parameter force=True, it will be applied in any
case.

4.2.4.3 The powdenest() Function The powdenest() function applies equa-
tion (4.3) from left-to-right. For instance,

z, d = sp.symbols("z, d", complex=True)
n = sp.symbols("n", integer=True)
e18 = (z**d)**n; e18
sp.powdenest(e18)

I3=

I3=

However, as we see from e18, the denesting is automatically applied. There may
be situations in which powdenest()must still be applied manually.



Symbolic Analysis 103

4.2.5 Exponential and Logarithmic Expression Manipulation

For G, H ≥ 0 and = ∈R, the following identities hold:
log(GH)= log(G) + log(H) (4.4)

log(G=)= = log(G) (4.5)

These can be applied with the expand_log() and logcombine() functions.

4.2.5.1 The expand_log() Function The expand_log() function applies equa-
tions (4.4) and (4.5) from left-to-right. In the following example, it applies
equation (4.4):

x, y = sp.symbols("x, y", positive=True)
n = sp.symbols("n", real=True)
e19 = sp.log(x * y); e19
sp.expand_log(e19)

log (GH)
log (G) + log (H)

In the following example, it applies equation (4.4):

e20 = sp.log(x**n); e20
sp.expand_log(e20)

log (G=)
= log (G)

4.2.5.2 The logcombine() Function The logcombine() function applies equa-
tions (4.4) and (4.5) from right-to-left. In the following example, it applies
equation (4.4):

e21 = sp.log(x) + sp.log(y); e21
sp.logcombine(e21)

log (G) + log (H)
log (GH)

In the following example, it applies equation (4.4):

e22 = n * sp.log(x); e22
sp.logcombine(e22)
= log (G)
log (G=)
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4.2.6 Rewriting Expressions in Terms of Other Functions

At times, there are identities that can translate an expression in terms of one func-
tion (or set of functions) into an expression in terms of another function (or set
of functions). In SymPy, the rewrite()method can perform this translation. For
instance, Euler’s formula, 4 9G = cos G + 9 sin G can be applied:

x = sp.symbols("x", complex=True)
e23 = sp.exp(1j * x); e23
e24 = e23.rewrite(sp.cos); e24 # Apply left-to-right
e24.rewrite(sp.exp) # Apply right-to-left

41.08G

8 sin (1.0G) + cos (1.0G)
41.08G

Here is an example with a hyperbolic trigonometric function:

e25 = sp.tanh(x); e25
e25.rewrite(sp.exp)

tanh (G)
4G − 4−G
4G + 4−G

Finally, consider the following example with trigonometric functions:

x, y = sp.symbols("x, y", real=True)
e26 = sp.tan(x + y)**2; e26
e26.rewrite(sp.cos)

tan2 (G + H)
cos2 (G + H − �

2

)
cos2 (G + H)

4.2.7 Substituting and Replacing Expressions

One expression can be substituted for another via a few different methods, the two
most useful of which are considered here.

4.2.7.1 The subs()Method The subs()method returns a copy of an expression
with specific subexpressions replaced. There are three ways to specify substitutions
for an expression expr:
• expr.subs(old, new), in which old is replaced with new
• expr.subs(iterable), in which iterable (e.g., a list) contains old/new
pairs like [(old0, new0), (old1, new1), ...]
• expr.subs(dictionary), in which dictionary contains old/new pairs like
{old0: new0, old1: new1, ...}

Consider the following simple examples:
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x, y, z = sp.symbols("x, y, z")
sp.sqrt(x + y).subs(x, 5)
(x + y**2 + z).subs({x: z, y: 2*z})√

H + 5

4I2 + 2I
By default, when an ordered iterable like a list or tuple is provided, substitu-

tions are performed in the order given, as in the following example:

(x + y).subs(((x, y), (y, z)))
2I

We see that the second substitution H→ I is applied after the first, G→ H. The
parameter simultaneous, by default False, can be passed as True so that new
subexpressions are ignored by later substitutions, as in the following example:

(x + y).subs(((x, y), (y, z)), simultaneous=True)
H + I

For dictionary substitutions, which are unordered, a canonical ordering based
on the number of operations is used for reproducibility. We do not recommend
relying on this canonical ordering, so if the order of substitutions is important, we
recommend using an ordered iterable.
If the substitutions result in a numerical value, it will by default remain a symbolic

expression:

sp.srepr((x + y).subs(((x, 1), (y, 3))))

'Integer(4)'

To get a numeric type from the result, the evalf()method can be used:

(1/y).subs(y, 3.0).evalf(n=20) # subs() first (20 decimal places)
(1/y).evalf(subs={y: 3.0}, n=20) # evalfr() subs (20 decimal places)

0.33333333333333331483
0.33333333333333333333

Note that passing the substitutions to through evalf() can result in a more
accurate representation, so this technique is preferred. We will later [TODO: ref]
return to more powerful techniques for numerical evaluation that convert SymPy
expressions to numerically evaluable functions.

4.2.7.2 The replace() Method The replace() method is similar to subs(),
but it has matching capabilities. Common usage of the replace() method uses
wildcard variables of class sp.core.symbol.Wild thatmatch anything in a pattern.
For instance,
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w = sp.symbols("w", cls=sp.Wild)
expr = sp.sin(x) + sp.sin(3*x)**2; expr
expr.replace(sp.sin(w), sp.cos(w)/w)

sin (G) + sin2 (3G)
cos (G)
G
+ cos2 (3G)

9G2

Note that the wildcard variable w was able to match both x and 3*x, and that the
thewildcard could be used in the new expression aswell. In this example, and in gen-
eral, these replacement rules are applied without head to their validity, so theymust
be used with caution. For more advanced usage, see the documentation on wildcard
matching, SymPy Development Team (2023b; § 6 Symbol (sympy.core.symbol,
Wild class)) and the documentation for replacement, SymPy Development Team
(2023b; § Basic (sympy.core.basic.Basic, replace()method)).

Box 4.1 Further Reading

• SymPy Development Team (2023c), A tutorial introduction to simplification
in SymPy
• SymPy Development Team (2023a), A tutorial on advanced SymPy expression
manipulation, including information about expression trees
• SymPy Development Team (2023b; § Basic (sympy.core.basic.Basic,
subs()method)), SymPy documentation on the subs()method
• SymPy Development Team (2023b; § Basic (sympy.core.basic.Basic,
replace() method)), SymPy documentation on the replace() method,
including more advanced usage
• SymPy Development Team (2023b; 6 Symbol (sympy.core.symbol, Wild
class)), SymPy documentation on the Wild class, including more advanced
pattern matching
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4.3 Solving Equations Algebraically LINK
4U

Virtually every engineering analysis requires the algebraic solution
of an equation or a, more generally, a system of equations (i.e., a set
of equations) to be solved simultaneously. For the engineer, this set of equations
typically encodes a set of design constraints, design heuristics, and physical laws.
In general, a system ( of < equations in = unknown variables G0 , · · · , G=−1 ∈C and
with < functions 50 , · · · , 5<−1 can be represented as the set

(=


50(G0 , · · · , G=)= 0
...

5<(G0 , · · · , G=)= 0

.

A solution for ( is an =-tuple of values for G8 that satisfies every equation in (.
There are three possible cases for a given system ( of equations:

1. The system ( has no solutions.
2. The system ( has exactly one solution, said to be unique.
3. The system ( has more than one solution (potentially infinitely many).

For some systems, a solution exists, but cannot be expressed in a closed-form or
symbolic (“analytic”) way. For such systems, a numerical solution is appropriate
(see chapter 5). In some cases (e.g., = linear, independent equations and = unknown
variables), a unique solution is guaranteed to exist.
There are two high-level SymPy function for solving equations algebraically,

sp.solve() and sp.solveset(). The former is older, but remains the more useful
for us; the latter has a simpler interface and is somewhat more mathematically
rigorous, but it is often difficult to use its results programmatically. We will focus
on sp.solve(). Neither function guarantees that it will find a solution, even if it
exists, except in special cases.
Representing an equation in SymPy can be done explicitly or an expression can

be treated as one side of an equation, with the other side implicitly 0. In other words,
the following are equivalent ways of defining the equation G2 − H2 = 2:

x, y = sp.symbols("x, y")
x**2 - y**2 - 2 # == 0 Implicit equation
sp.Eq(x**2 - y**2, 2) # Explicit equation

https://engineering-computing.ricopic.one/4u
https://engineering-computing.ricopic.one/4u
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4.3.1 The sp.solve() Function
The sp.solve() function has the capability of solving a large class of systems of
equations algebraically. The function has many optional arguments, but its basic
usage is

sp.solve(f, *symbols, **flags)

Here is a basic interpretation of each argument:

• f: An equation or expression that is implicitly equal to zero or an iterable of
equations or expressions.
• symbols: A symbol (e.g., variable) to solve for or an iterable of symbols.
• flags: Optional arguments, of which there are many. We recommend always
using the dict=True option because it guarantees a consistent output: a list
of dictionaries, one for each solution.

Consider the linear system of 3 equations and 3 unknown variables:

3G − 2H + 6I =−9 (4.6a)

8H + 4I =−1 (4.6b)

−G + 4H = 0. (4.6c)

The sp.solve() function can be deployed to solve this system as follows:

x, y, z = sp.symbols("x, y, z", complex=True)
S1 = [

3*x - 2*y + 6*z + 9, # == 0
8*y + 4*z + 1, # == 0
-x + 4*y, # == 0

] # A system of 3 equations and 3 unknowns
sol = sp.solve(S1, [x, y, z], dict=True); sol

[{x: 15, y: 15/4, z: -31/4}]

Now consider a simpler system of a single equation that includes a symbolic
parameter 0:

G2 + 3G + 0.
Applying sp.solve(),

a = sp.symbols("a", complex=True)
S2 = [x**2 + 2*x + a] # A system of 1 equation and 1 unknown
sol = sp.solve(S2, [x], dict=True); sol

[{x: -sqrt(1 - a) - 1}, {x: sqrt(1 - a) - 1}]

The quadratic formula has been applied, which yields two solutions, given in the
sol list. Note that the solver was alerted to which symbolic variable was to be
treated as an unknown variable (i.e., x) and which was to be treated as a known
parameter (i.e., a) by the second argument [x] (i.e., symbols).
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Suppose the solutions for G were to be substituted into an expression containing
G. The dict object returned (here assigned to sol) can be used with the subs()
method. For instance,

(x + 5).subs(sol[0])
(x + 5).subs(sol[1])

4−
√

1− 0√
1− 0 + 4

The sp.solve() function can solve for expressions and undefined functions, as
well. Here we solve for an undefined function:

f = sp.Function("f")
eq = sp.Eq(f(x)**2 + 2*sp.diff(f(x), x), f(x))
sol = sp.solve(eq, f(x), dict=True)

5 2(G) + 2
3

3G
5 (G)= 5 (G)

5 (G)= 1
2
−

√
1− 8 3

3G
5 (G)

2

5 (G)=

√
1− 8 3

3G
5 (G)

2
+ 1

2
It can solve for the derivative term, too, as follows:

sol = sp.solve(eq, sp.diff(f(x), x), dict=True)

3

3G
5 (G)= (

1− 5 (G)) 5 (G)
2

Example 4.1

You are designing the truss structure shown in figure 4.2. The external load of
f� =− 5� ĵ (we use the standard unit vectors î, ĵ, k̂), where 5� > 0, is given. As
the designer, you are to make the F dimension as long as possible under the
following constraints:

• Minimize the dimension ℎ
• The tension in all members is no more than a given )
• The compression in all members is no more than a given �
• The magnitude of the support force at pin A is no more than a given %�
• The magnitude of the support force at pin C is no more than a given %�

Use a static analysis and the method of joints to develop a solution for the force in
eachmember ���, ��� , etc., and the reaction forces using the sign convention that
tension is positive and compression is negative. Create a function that determines
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design feasibility for a given set of design parameters { 5� , ), �, %� , %�} and test
the function.

A B

C

D

E

F

F F F

ℎ

f�

G

H

�

Figure 4.2. A truss with pinned joints, supported by a hinge and a floating support,
with an applied force f� .

Using the method of joints, we proceed through the joints, summing forces in
the G- and H-directions. We will assume all members are in tension, and their
sign will be positive if this is the case and negative, otherwise. Beginning with
joint A, which includes two reaction forces '�G and '�H from the support,

Σ�G = 0; '�G + ��� + ��� cos�= 0 (4.7)

Σ�H = 0; '�H − ��� sin�= 0. (4.8)

The angle � is known in terms of the dimensions F and ℎ as

�= arctan
ℎ

F
.

These equations can be encode symbolically as follows:

RAx, RAy, FAB, FAC, theta= sp.symbols(
"RAx, RAy, FAB, FAC, theta", real=True

)
h, w = sp.symbols("h, w", positive=True)
eqAx = RAx + FAB + FAC*sp.cos(theta)
eqAy = RAy - FAC*sp.sin(theta)
theta_wh = sp.atan(h/w)

Proceeding to joint B,

Σ�G = 0; −��� + ��� + ��� cos�= 0 (4.9)

Σ�H = 0; −��� − ��� sin�= 0. (4.10)

Encoding these equations,
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FBD, FBE, FBC = sp.symbols("FBD, FBE, FBC", real=True)
eqBx = -FAB + FBD + FBE*sp.cos(theta)
eqBy = -FBC - FBE*sp.sin(theta)

For joint C, the floating support has a vertical reaction force '� , so the analysis
proceeds as follows:

Σ�G = 0; −��� cos�+ ��� = 0 (4.11)

Σ�H = 0; ��� sin�+ ��� +'� = 0. (4.12)

Encoding these equations,

FCE, RC = sp.symbols("FCE, RC", real=True)
eqCx = -FAC*sp.cos(theta) + FCE
eqCy = FAC*sp.sin(theta) + FBC + RC

For joint D, we can recognize that DE is a zero-force member:

Σ�G = 0; −��� + ��� = 0 (4.13)

Σ�H = 0; ��� = 0. (4.14)

Encoding these equations,

FDE, FDF = sp.symbols("FDE, FDF", real=True)
eqDx = -FBD + FDF
eqDy = FDE

Proceeding to joint E,

Σ�G = 0; −��� − ��� cos�+ ��� cos�= 0 (4.15)

Σ�H = 0; ��� sin�+ ��� + ��� sin�= 0. (4.16)

Encoding these equations,

FEF = sp.symbols("FEF", real=True)
eqEx = -FCE - FBE*sp.cos(theta) + FEF*sp.cos(theta)
eqEy = FBE*sp.sin(theta) + FDE + FEF*sp.sin(theta)

Finally, consider joint F, with the externally applied force f� ,

Σ�G = 0; −��� − ��� cos�= 0 (4.17)

Σ�H = 0; − 5� − ��� sin�= 0. (4.18)

Encoding these equations,

fF = sp.symbols("fF", positive=True)
eqFx = -FDF - FEF*sp.cos(theta)
eqFy = -fF - FEF*sp.sin(theta)
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In total, we have 12 force equations and 12 unknown forces (9 member forces
and three reaction forces). Let’s construct the system and solve it for the unkown
forces, as follows:

S_forces = [
eqAx, eqAy, eqBx, eqBy, eqCx, eqCy,
eqDx, eqDy, eqEx, eqEy, eqFx, eqFy,

] # 12 force equations
forces_unknown = [
FAB, FAC, FBC, FBD, FBE, FCE, FDF, FDE, FEF, # 9 member forces
RAx, RAy, RC, # 3 reaction forces

] # 12 unkown forces
sol_forces = sp.solve(S_forces, forces_unknown, dict=True); sol_forces

[{FAB: 2*fF*cos(theta)/sin(theta),
FAC: -2*fF/sin(theta),
FBC: -fF,
FBD: fF*cos(theta)/sin(theta),
FBE: fF/sin(theta),
FCE: -2*fF*cos(theta)/sin(theta),
FDE: 0,
FDF: fF*cos(theta)/sin(theta),
FEF: -fF/sin(theta),
RAx: 0,
RAy: -2*fF,
RC: 3*fF}]

This solution is in terms of 5� , which is known, and �. Because F and ℎ are our
design parameters, let’s substitute eqtheta such that our solution is rewritten
in terms of 5� , F, and ℎ. Create a list of solutions as follows:

forces_wh = [] # Initialize
for force in forces_unknown:
force_wh = force.subs(

sol_forces[0]
).subs(

theta, theta_wh
).simplify()
forces_wh.append(force_wh)
print(f"{force} = {force_wh}")
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FAB = 2*fF*w/h
FAC = -2*fF*sqrt(h**2 + w**2)/h
FBC = -fF
FBD = fF*w/h
FBE = fF*sqrt(h**2 + w**2)/h
FCE = -2*fF*w/h
FDF = fF*w/h
FDE = 0
FEF = -fF*sqrt(h**2 + w**2)/h
RAx = 0
RAy = -2*fF
RC = 3*fF

This set of equations is excellent for design purposes. Because 5� , F, ℎ > 0,
the sign of each force indicates tension (+) or compression (−). For the forces
with the factor F/ℎ, clearly increasing F or decreasing ℎ increases the force,

proportionally. For the forces with the factor
√
ℎ2 +F2/ℎ, things are a bit more

subtle. Introducing a new parameter A =F/ℎ, we can rewrite these equations in
a somewhat simpler manner, as follows:

r = sp.symbols("r", positive=True)
forces_r = [] # Initialize
force_r_subs = {} # For substitutions
for i, force in enumerate(forces_wh):

force_r = force.subs(w, h*r).simplify()
forces_r.append(force_r)
force_r_subs[forces_unknown[i]] = force_r
print(f"{forces_unknown[i]} = {force_r}")

FAB = 2*fF*r
FAC = -2*fF*sqrt(r**2 + 1)
FBC = -fF
FBD = fF*r
FBE = fF*sqrt(r**2 + 1)
FCE = -2*fF*r
FDF = fF*r
FDE = 0
FEF = -fF*sqrt(r**2 + 1)
RAx = 0
RAy = -2*fF
RC = 3*fF

It is worthwhile investigating the term
√
A2 + 1. Generate a graph over a

reasonable range of A =F/ℎ and compare it to A and 2A, as follows:
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r_a = np.linspace(0, 5, 51)
fig, ax = plt.subplots()
ax.plot(r_a, np.sqrt(r_a**2 + 1), label="$\\sqrt{r^2+1}$")
ax.plot(r_a, r_a, label="$r$")
ax.plot(r_a, 2*r_a, label="$2 r$")
ax.set_xlabel("$r = w/h$")
ax.grid()
ax.legend()

0 1 2 3 4 5

A =F/ℎ

0

2

4
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8

10 √
A2 + 1

A

2A

Figure 4.3. A graph of
√
A2 + 1, where A =F/ℎ.

So we see that
√
A2 + 1→ A. That is, A =F/ℎ is the defining parameter and the

design requirements are to maximize F and minimize ℎ, which is tantamount
to maximizing A. Under the reasonable assumption that A > 1, we can see the
member with the most tension is AB, with its force ��� = 2A 5� , and the member
with the most compression is AC, with its force ��� =−2

√
A2 + 1 5� . From our

design requirements, then,

��� = 2A 5� ≤) (4.19)

−��� = 2
√
A2 + 1 5� ≤ �. (4.20)

This leads to two constraints on A, call them A) and A� , both maxima, which can
be solved for automatically as follows:
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T, C = sp.symbols("T, C", positive=True)
eqrT = FAB.subs(force_r_subs) - T # <= 0
eqrC = -FAC.subs(force_r_subs) - C # <= 0
sol_rT = sp.solve(eqrT, r, dict=True) # Solution for A)
sol_rC = sp.solve(eqrC, r, dict=True) # Solution for A�
r_maxima = {

"Tension": sol_rT[0],
"Compression": sol_rC[0],

}
print(r_maxima)

{'Tension': {r: T/(2*fF)}, 'Compression': {r: sqrt(C**2 -
4*fF**2)/(2*fF)}}↩→

Another set of constraints apply to the supports. From the design requirements,

|X� | =
√
'2
�G
+'2

�H
≤ %� (4.21)

|X� | = |'� | ≤ %� (4.22)

From our results above, the reaction forces don’t depend on A (or F or ℎ), so
these constraints are merely to be checked to ensure that the design problem is
feasible. Proceeding in a similar manner as above, we obtain two constraints on
5� , maxima 5� and 5� as follows:

PA, PC = sp.symbols("PA, PC", positive=True)
eqRA = sp.sqrt(RAx**2 + RAy**2).subs(force_r_subs) - PA # <= 0
eqRC = sp.Abs(RC).subs(force_r_subs) - PC # <= 0
sol_fFA = sp.solve(eqRA, fF, dict=True) # Solution for 5�
sol_fFC = sp.solve(eqRC, fF, dict=True) # Solution for 5�
load_maxima = {

"Support A": sol_fFA[0],
"Support C": sol_fFC[0],

}
print(load_maxima)

{'Support A': {fF: PA/2}, 'Support C': {fF: PC/3}}

Finally, we can create a function to perform the design, given a set of design
parameters. First, define an auxilliary function to check the support constraints:
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def check_supports(load_maxima, design_params, report=""):
for kLM, vLM in load_maxima.items():

fF_design = fF.evalf(subs=design_params)
fF_max = fF.subs(vLM).evalf(subs=design_params)
if fF_design > fF_max:

return False, f"Design infeasible due to {kLM} constraint: " \
f"{fF_design:.4g} </= {fF_max:.4g}."

else:
report += f"{kLM} constraint satisfied: " \

f"{fF_design:.4g} <= {fF_max:.4g}.\n"
report += "Design feasible for supports."
return True, report

Now define an auxilliary function to maximize A:

def maximize_r(r_maxima, design_params, report=""):
r_maxima_ = [] # Initialize numerical maxima
for k_max, r_max in r_maxima.items():

r_max_ = r.subs(r_max).evalf(subs=design_params)
if np.abs(np.imag(complex(r_max_))) > 0.: # Ensure real

report += f"\nNo feasible r for {k_max} constraint."
return False, None, report

r_maxima_.append(r_max_)
report += f"\nMax r for {k_max} constraint: {r_max_:.4g}."

r_max = min(r_maxima_) # Min of the maxima if the feasible max
report += f"\nOverall max r = w/h = {r_max}."
return True, r_max, report

Finally, define the function to design the truss:

def truss_designer(load_maxima, r_maxima, design_params):
"""Returns a dict of r=w/h ratio for the truss and a report"""
satisfied, report = check_supports(load_maxima, design_params)
if not satisfied:

return satisfied, report
satisfied, r_max, report = maximize_r(

r_maxima, design_params, report
)
if not satisfied:

return satisfied, report
return r_max, report

Define the three sets of design parameters in a dictionary:

design_parameters_dict = {
"1": {fF: 1000, T: 3500, C: 3200, PA: 3500, PC: 3500},
"2": {fF: 2000, T: 4500, C: 6000, PA: 3500, PC: 3500},
"3": {fF: 2000, T: 3500, C: 3200, PA: 6500, PC: 6000}

} # Forces in N
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Loop through the designs, run truss_designer(), and print each report:

for design, design_params in design_parameters_dict.items():
r_max, rep = truss_designer(load_maxima, r_maxima, design_params)
rep = f"Design {design} report:\n\t" + rep.replace("\n", "\n\t")
print(rep)

Design 1 report:
Support A constraint satisfied: 1000 <= 1750.
Support C constraint satisfied: 1000 <= 1167.
Design feasible for supports.
Max r for Tension constraint: 1.750.
Max r for Compression constraint: 1.249.
Overall max r = w/h = 1.24899959967968.

Design 2 report:
Design infeasible due to Support A constraint: 2000 </= 1750.

Design 3 report:
Support A constraint satisfied: 2000 <= 3250.
Support C constraint satisfied: 2000 <= 2000.
Design feasible for supports.
Max r for Tension constraint: 0.8750.
No feasible r for Compression constraint.

4.4 From Symbolics to Numerics LINK
UR

An engineering analysis typically requires that a symbolic solution
be applied via the substitution of numbers into a symbolic expression.
In section 4.2.7, we considered how to subsitute numerical values into expressions
using SymPy’s evalf()method. This is fine for a single value, but frequently an
expression is to be evaluated at an array of numerical values. Looping through
the array and applying evalf() is cumbersome and computationally slow. An
easier and computationally efficient technique using the sp.lambdify() function
is introduced in this section. The function sp.lambdify() creates an efficient,
numerically evaluable function from a SymPy expression. The basic usage of the
function is as follows:

x = sp.symbols("x", real=True)
expr = x**2 + 7
f = sp.lambdify(x, expr)
f(2)

11

By default, if NumPy is present, sp.lambdify() vectorizes the function such
that the function can be provided with NumPy array arguments and return NumPy
array values. However, it is best to avoid relying on the function’s implicit behavior,

https://engineering-computing.ricopic.one/ur
https://engineering-computing.ricopic.one/ur
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which can change when different modules are present, it is best to provide the
numerical module explicitly, as follows:

f = sp.lambdify(x, expr, modules="numpy")
f(np.array([1, 2, 3.5]))

array([ 8. , 11. , 19.25])

Multiple arguments are supported, as in the following example:

x, y = sp.symbols("x, y", real=True)
expr = sp.cos(x) * sp.sin(y)
f = sp.lambdify([x, y], expr, modules="numpy")
f(3, 4)

0.7492287917633428

All the usual NumPy broadcasting rules will apply for the function. For instance,

X = np.array([[1], [2]]) # 2x1 matrix
Y = np.array([[1, 2, 3]]) # 1x3 matrix
f(X, Y)

array([[ 0.45464871, 0.4912955 , 0.07624747],
[-0.35017549, -0.37840125, -0.05872664]])

Example 4.2

You are designing the circuit shown in figure 4.4. Treat the source voltage +(,
the source resistance '(, and the overall circuit topology as known constants.
The circuit design requires the selection of resistances '1, '2, and '3 such that
the voltage across '3, E'3 =+'3 , and the current through '1, 8'1 = �'1 , where +'3

and �'1 are known constants (i.e., design requirements). Proceed through the
following steps:

1. Solve for all the resistor voltages E': and currents 8': in terms of known
constants and '1, '2, and '3 using circuit laws

2. Apply the constraints E'3 =+'3 and 8'1 = �'1 to obtain two equations
relating '1, '2, and '3

3. Solve for '2 and '3 as functions of '1 and known constants
4. Create a design graph for the selection of '1, '2, and '3 given the following

design parameters: +( = 10 V, '( = 50 Ω, +'3 = 1 V, and �'1 = 20 mA.
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+
−+(

'( '2

'3'1

Figure 4.4. A resistor circuit design for example 4.2.

Solve for the Resistor Voltages and Currents Each resistor has an unknown
voltage and current. We will develop and solve a system of equations using
circuit laws. Begin by defining symbolic variables as follows:

v_RS, i_RS, v_R1, i_R1, v_R2, i_R2, v_R3, i_R3 = sp.symbols(
"v_RS, i_RS, v_R1, i_R1, v_R2, i_R2, v_R3, i_R3", real=True

)
viR_vars = [v_RS, i_RS, v_R1, i_R1, v_R2, i_R2, v_R3, i_R3]
R1, R2, R3 = sp.symbols("R1, R2, R3", positive=True)
V_S, R_S, V_R3, I_R1 = sp.symbols("V_S, R_S, V_R3, I_R1", real=True)

There are 4 resistors, so there are 2 · 4= 8 unknown voltages and currents;
therefore, we need 8 independent equations. The first circuit law we apply is
Ohm’s law, which states that the ratio of voltage over current for a resistor is
approximately constant. Applying this to each resistor, we obtain the following
4 equations:

Ohms_law = [
v_RS - R_S*i_RS, # == 0
v_R1 - R1*i_R1, # == 0
v_R2 - R2*i_R2, # == 0
v_R3 - R3*i_R3, # == 0

]

The second circuit law we apply is Kirchhoff’s current law (KCL), which
states that the sum of the current into a node must equal 0. Applying this to the
upper-middle and upper-right nodes, we obtain the following 2 equations:

KCL = [
i_RS - i_R1 - i_R2, # == 0
i_R2 - i_R3, # == 0

]

The third circuit law we apply is Kirchhoff’s voltage law (KVL), which states
that the sum of the voltage around a closed loop must equal 0. Applying this to
the left and right inner loops, we obtain the following 2 equations:



120 Chapter 4

KVL = [
V_S - v_R1 - v_RS, # == 0
v_R1 - v_R3 - v_R2, # == 0

]

Our collection of 8 equations are independent because none can be derived
from another. They make a linear system of equations, which can be solved
simultaneously as follows:

viR_sol = sp.solve(Ohms_law + KCL + KVL, viR_vars, dict=True)[0]
print(viR_sol)

8'1 =
+( ('2 +'3)

'1'2 +'1'3 +'1'( +'2'( +'3'(

8'2 =
'1+(

'1'2 +'1'3 +'1'( +'2'( +'3'(

8'3 =
'1+(

'1'2 +'1'3 +'1'( +'2'( +'3'(

8'( =
+( ('1 +'2 +'3)

'1'2 +'1'3 +'1'( +'2'( +'3'(

E'1 =
'1+( ('2 +'3)

'1'2 +'1'3 +'1'( +'2'( +'3'(

E'2 =
'1'2+(

'1'2 +'1'3 +'1'( +'2'( +'3'(

E'3 =
'1'3+(

'1'2 +'1'3 +'1'( +'2'( +'3'(

E'( =
'(+( ('1 +'2 +'3)

'1'2 +'1'3 +'1'( +'2'( +'3'(

Apply the Requirement Constraints The requirements that E'3 =+'3 and 8'1 =

�'1 can be encoded symbolically as two equations as follows:

constraints = {v_R3: V_R3, i_R1: I_R1} # Design constraints
constraint_equations = [
sp.Eq(v_R3.subs(constraints), v_R3.subs(viR_sol)),
sp.Eq(i_R1.subs(constraints), i_R1.subs(viR_sol)),

]
print(constraint_equations)

+'3 =
'1'3+(

'1'2 +'1'3 +'1'( +'2'( +'3'(

�'1 =
'2+( +'3+(

'1'2 +'1'3 +'1'( +'2'( +'3'(

Solve for Resistances The system of 2 constraint equations and 3 unkowns
('1, '2, and '3) is underdetermined, which means there are infinite solutions.
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The two equations can be solved for '1 and '2 in terms of '3 and parameters as
follows:

constraints_sol = sp.solve(
constraint_equations, [R1, R2], dict=True

)[0]
print(constraints_sol)

'1 =−'( +
+(

�'1
− '(+'3

�'1'3

'2 =
−'3 (�'1'( ++'3 −+() −'(+'3

+'3

Create a Design Graph Applying the design parameters and defining numeri-
cally evaluable functions for '1 and '2 as functions of '3,

design_params = {V_S: 10, R_S: 50, V_R3: 1, I_R1: 0.02}
R1_fun = sp.lambdify(

[R3],
R1.subs(constraints_sol).subs(design_params),
modules="numpy",

)
R2_fun = sp.lambdify(

[R3],
R2.subs(constraints_sol).subs(design_params),
modules="numpy",

)

And now we are ready to create the design graph, as follows:

R3_ = np.linspace(10, 100, 101) # Values of '3
fig, ax = plt.subplots()
ax.plot(R3_, R1_fun(R3_), label="$R_1$ ($\\Omega$)")
ax.plot(R3_, R2_fun(R3_), label="$R_2$ ($\\Omega$)")
ax.set_xlabel("$R_3$ ($\\Omega$)")
ax.legend()
ax.grid()
plt.show()
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Figure 4.5. A design graph for resistors '1, '2, and '3.

4.5 Vectors and Matrices LINK
RD

Symbolic vectors and matrices can be constructed, manipulated, and
operated on with SymPy. Basic vectors and matrices are represented
with the mutable sp.matrices.dense.MutableDenseMatrix class and can be
constructed with the sp.Matrix constructor, as follows:
u = sp.Matrix([[0], [1], [2]]) # 3× 1 column vector
v = sp.Matrix([[3, 4, 5]]) # 1× 3 row vector
A = sp.Matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 3× 3 matrix

Without loss of generality, we can refer to vectors and matrices as matrices.
Symbolic variables can be elements of symbolic matrices; for instance, consider

the following:

x1, x2, x3 = sp.symbols("x1, x2, x3")
x = sp.Matrix([[x1], [x2], [x3]]) # 3× 1 vector

Symbolic matrix elements can be accessed with the same slicing notation as lists
and NumPy arrays; for insance:

A[:,0]
A[0,:]
A[1,1:]
x[0:,0]

https://engineering-computing.ricopic.one/rd
https://engineering-computing.ricopic.one/rd
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
0
3
6

[
0 1 2

][
4 5

]
G1

G2

G3


As with lists and contrary to arrays, these slices return a copy and not a view of

the original matrix. Elements and slices can be overwritten with the same notation
as lists and arrays, as follows:

A[0,0] = 7; A # A is changed
A[:,1] = sp.Matrix([[8], [8], [8]]); A # A is changed

7 1 2
3 4 5
6 7 8


7 8 2
3 8 5
6 8 8


Matrix row i or column j can be deleted with the row_del(i) or col_del(j)

method. These methods operate in place. For instance,

A.row_del(2); A
A.col_del(1); A[

7 8 2
3 8 5

]
[
7 2
3 5

]
Conversely, a row can be inserted at index i or a column can be inserted at index j

with the method row_insert(i, row) or col_insert(j, col). These methods
do not operate in place. For instance,

A.row_insert(2, sp.Matrix([[9, 9]])) # A is unchanged
A.col_insert(1, sp.Matrix([[9], [9]])) # A is unchanged

7 2
3 5
9 9


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[
7 9 2
3 9 5

]
Addition and subtraction works element-wise, in accordance with the matrix

mathematics, as follows:

A = sp.Matrix([[0, 1], [2, 3]]) # 2× 2 matrix
B = sp.Matrix([[4, 5], [6, 7]]) # 2× 2 matrix
A + B
A - B[

4 6
8 10

]
[
−4 −4
−4 −4

]
Matrix multiplication is in accordance with mathematical matrix multiplication

(i.e., not element-wise), as follows:

A*B
B*A[

6 7
26 31

]
[
10 19
14 27

]
Thematrix inverse, if it exists, can be computed by raising the matrix to the power

-1, as follows:
A**-1
B**-1[
− 3

2
1
2

1 0

]
[
− 7

2
5
2

3 −2

]
Thematrix transpose can be accessed as an attribute T, which returns a transposed

copy, as follows:

A.T
B.T[

0 2
1 3

]
[
4 6
5 7

]
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An n-by-n identity matrix can be constructed via the eye(n) function, as follows:

sp.eye(3)
1 0 0
0 1 0
0 0 1


An n-by-mmatrix with all 0 compenents can be constructed via the zeros(n, m)

function, as follows:

sp.zeros(2,4)[
0 0 0 0
0 0 0 0

]
Similarly, an n-by-m matrix with all 1 compenents can be constructed via the

ones(n, m) function, as follows:
sp.ones(2,8)[

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

]
Adiagonal or block-diagonalmatrix can be constructed by providing the diagonal

elements to the diag() function, as follows:

D = sp.diag(1, 2, 3); D
1 0 0
0 2 0
0 0 3


The determinant of a matrix can be computed via the det()method, as follows:

D.det()
6

The eigenvalues and eigenvectors of a matrix can be computed via the
eigenvects()method, which returns a list of tuples, one for each eigenvalue, of
the form (eval, m, evec), where eval is the eigenvalue, m is the corresponding
algebraic multiplicity of the eigenvalue, and evec is the corresponding eigenvector.
For instance,

A.eigenvects()
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[(3/2 - sqrt(17)/2,
1,
[Matrix([
[-sqrt(17)/4 - 3/4],
[ 1]])]),

(3/2 + sqrt(17)/2,
1,
[Matrix([
[-3/4 + sqrt(17)/4],
[ 1]])])]

4.6 Calculus LINK
IU

Engineering analysis regularly includes calculus. Derivatives with
respect to time and differential equations (i.e., equations including
derivatives) are the key mathematical models of rigid-body mechanics (e.g., statics
and dynamics), solid mechanics (e.g., mechanics of materials), fluid mechanics,
heat transfer, and electromagnetism. Integration is necessary for solving differen-
tial equations and computing important quantities of interest. Limits and series
expansions are frequently used to in the analytic process to simplify equations and
to estimate unkown quantities. In other words, calculus is central to the enterprise
of engineering analysis.

4.6.1 Derivatives

In SymPy, it is possible to compute the derivative of an expression using the diff()
function and method, as follows:

x, y = sp.symbols("x, y", real=True)
expr = x**2 + x*y + y**2
expr.diff(x) # Or sp.diff(expr, x)
expr.diff(y) # Or sp.diff(expr, y)

2G + H
G + 2H

Higher-order derivatives can be computed by adding the corresponding integer,
as in the following second derivative:

expr.diff(x, 2) # Or sp.diff(expr, x, 2)
2

We can see that the partial derivative is applied to a multivariate expression. The
differentiation can be mixed, as well, as in the following example:

expr = x * y**2/(x**2 + y**2)
expr.diff(x, 1, y, 2).simplify() # %3/%G%H2

https://engineering-computing.ricopic.one/iu
https://engineering-computing.ricopic.one/iu
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2G2 (−G4 + 14G2H2 − 9H4)
G8 + 4G6H2 + 6G4H4 + 4G2H6 + H8

The option evaluate=False will leave the derivative unevaluated until the
doit()method is called, as in the following example:

expr = sp.sin(x)
expr2 = expr.diff(x, evaluate=False); expr2
expr2.doit()

3

3G
sin (G)

cos (G)
The derivative of an undefined function is left unevaluated, as in the following

case:

f = sp.Function("f", real=True)
expr = 3*f(x) + f(x)**2
expr.diff(x)

2 5 (G) 3
3G

5 (G) + 3
3

3G
5 (G)

As we can see, the chain rule of differentiation was applied automatically.
Differentiation works element-wise on matrices and vectors, just as it works

mathematically. For instance,

v = sp.Matrix([[x**2], [x*y]])
v.diff(x)[

2G
H

]
4.6.2 Integrals

To a symbolic integral in SymPy, use the integrate() function or method. For an
indefinite integral, pass only the variable over which to integrate, as in

x, y = sp.symbols("x, y", real=True)
expr = x + y
expr.integrate(x) # Or sp.integrate(expr, x);

∫
G + H 3G

G2

2
+ GH

Note that no constant of integration is added, so you may need to add your own.
The definite integral can be computed by providing a triple, as in the following

example,
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sp.integrate(expr, (x, 0, 3)) #
∫ 3

0 G + H 3G
sp.integrate(expr, (x, 1, y)) #

∫ H
1 G + H 3G

3H + 9
2

3H2

2
− H − 1

2
Multiple integrals can be computed in a similar fashion, as in the following

examples:

sp.integrate(expr, (x, 0, 4), (y, 2, 3)) #
∫ 3

2

∫ 4
0 G + H 3G3H

18
To create an unevaluated integral object, use the sp.Integral() constructor. To

evaluate an unevaluated integral, use the doit()method, as follows:

expr2 = sp.Integral(expr, x); expr2 # Unevaluated
expr2.doit() # Evaluate∫

(G + H) 3G

G2

2
+ GH

Integration works over piecewise functions, as in the following example:

f = sp.Piecewise((0, x < 0), (1, x >= 0)); f
sp.integrate(f, (x, -5, 5)){

0 for G < 0

1 otherwise

5
The integrate() function and method is very powerful, but it may not be able

to integrate some functions. In such cases, it returns an unevaluated integral.

4.6.3 Limits

In SymPy, a limit can be computed via the limit() function and method. The
limG→0 can be computed as follows:

sp.limit(sp.tanh(x)/x, x, 0) # limG→0 tanh(G)/G
1

The limit to infinity or negative infinity can be denoted using the sp.oo symbol,
as follows:

sp.limit(2 - x * sp.exp(-x), x, sp.oo) # limG→∞(1− G4−G)
2

The limit can be left unevaluated using the sp.Limit() constructor, as follows:
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lim = sp.Limit(2 - x * sp.exp(-x), x, sp.oo); expr # Unevaluated
lim.doit() # Evaluate
G + H
2

The limit can be taken from a direction using the optional fourth argument, as
follows:

expr = 1/x
lim_neg = sp.Limit(expr, x, 0, "-"); lim_neg
lim_pos = sp.Limit(expr, x, 0, "+"); lim_pos
lim_neg.doit()
lim_pos.doit()

lim
G→0−

1
G

lim
G→0+

1
G

−∞
∞

4.6.4 Taylor Series

A Taylor series (i.e., Taylor expansion) is an infinite power series approximation of
an infinitely differentiable function near some point. For a function 5 (G), the Taylor
series at point G0 is given by

∞∑
==0

5 (=)

=!
(G − G0)= = 5 (G0) + 5 ′(G0)(G − G0) +

5 ′′(G0)
2!
(G − G0)2 + · · · .

We often represent terms with power order < and greater with the big-O notation

$((G − G0)<). For instance, for an expansion about G0 = 0,
∞∑
==0

5 (=)

=!
(G)= = 5 (0) + 5 ′(G0)(G − G0) +$(G2).

In SymPy, the Taylor series can be found via the series() function or method.
For instance,

f = sp.sin(x)
f.series(x0=0, n=4) # Or sp.series(f, x0=0, n=4)

G − G
3

6
+$

(
G4)

The sp.O() function, which appears in this result, automatically absorbs higher-
order terms. For instance,

x**2 + x**4 + x** 5 + sp.O(x**4)

G2 +$
(
G4)
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To remove the sp.O() function from an expression, call the removeO()method,
as follows:

f.series(x0=0, n=4).removeO()

−G
3

6
+ G

Removing the higher-order terms is frequently useful when we would like to use
the =th-order Taylor polynomial, a truncated Taylor series, as an approximation of
a function.

4.7 Solving Ordinary Differential Equations LINK
J1

Engineering analysis regularly includes the solution of differential
equations. Differential equations are those equations that contain
derivatives. An ordinary differential equation (ODE) is a differential equation that
contains only ordinary, as opposed to partial, derivatives. A linear ODE—one for
which constant multiples and sums of solutions are also solutions—is an important
type that represent linear, time-varying (LTV) systems. For this class of ODEs, it
has been proven that for a set of initial conditions, a unique solution exists (Kreyszig
2010; p. 108).
A constant-coefficient, linear ODE can represent linear, time-invariant (LTI)

systems. An LTV or LTI system model can be represented as a scalar =th-order
ODE, or as a system of = 1st-order ODEs. As a scalar =th-order linear ODE, with
independent time variable C, output function H(C), forcing function 5 (C), and constant
coefficients 08 , has the form

H(=)(C) + 0=−1H
(=−1)(C) + · · · 01H

′(C) + 00H(C)= 5 (C). (4.23)

The forcing function 5 (C) can be written as a linear combination of derivatives of
the input function D(C)with < + 1≤ = + 1 constant coefficients 1 9 , as follows:

5 (C)= 1<D(<)(C) + 1<−1D
(<−1)(C) + · · · + 11D

′(C) + 10D(C).
Alternatively, the same LTI system model can be represented by a system of =
1st-order ODEs, which can be written in vector form as

x′(C)=Gx(C) +Hu(C) (4.24a)

y(C)=Ix(C) +Ju(C), (4.24b)

where x(C) is called the state vector, u(C) is called the input vector, and y(C) is
called the output vector (they are actually vector-valued functions of time), and
G, H, I, and J are matrices containing constants derived from system parameters
(e.g., a mass, a spring constant, a capacitance, etc.). Equation (4.24) is called an LTI
state-space model, and it is used to model a great many engineering systems.

https://engineering-computing.ricopic.one/j1
https://engineering-computing.ricopic.one/j1
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Solving ODEs and systems of ODEs is a major topic of mathematical engineering
analysis. It is typically the primary topic of one required course and a secondary
topic of several others. Understanding when these solutions exist, whether they are
unique, and how they can be found adds much to the understanding of engineering
systems. However, it is also true that CASs such as SymPy offer the engineer
excellent tools for making quick and adaptable work of this task.
Consider the ODE

3H′(C) + H(C)= 5 (C),
where the forcing function 5 (C) is defined piecewise as

5 (C)=
{

0 C < 0

1 C ≥ 0.

The SymPy dsolve() function can find the general solution (i.e., a family of
solutions for any initial conditions) with the following code:

t = sp.symbols("t", nonnegative=True)
y = sp.Function("y", real=True)
f = 1 # Or sp.Piecewise(), but C ≥ 0 already restricts 5 (C)
ode = sp.Eq(3*y(t).diff(t) + y(t), f) # Define the ODE
sol = sp.dsolve(ode, y(t)); sol # Solve

H(C)=�14
− C3 + 1

The solution is returned as an sp.Eq() equation object. Note the unknown constant
�1 in the solution. To find the specific solution (i.e., the general solution with the
initial condition applied to determine �1) for a given initial condition H(0)= 5,

sol = sp.dsolve(ode, y(t), ics={y(0): 5}); sol

H(C)= 1+ 44−
C
3

Now consider the ODE

H′′(C) + 5H′(C) + 9H(C)= 0.

The SymPy dsolve() function can find the general solution with the following
code:

ode = sp.Eq(y(t).diff(t, 2) + 5*y(t).diff(t) + 9*y(t), 0)
sol = sp.dsolve(ode, y(t)); sol

H(C)=
(
�1 sin

(√
11C
2

)
+�2 cos

(√
11C
2

))
4−

5C
2

This is a decaying sinusoid. Applying two initial conditions, H(0)= 4 and H′(0)= 0,
we obtain the following:
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sol = sp.dsolve(
ode, y(t),
ics={y(0): 4, y(t).diff(t).subs(t, 0): 0}

); sol

H(C)=
©­­«

20
√

11 sin
(√

11C
2

)
11

+ 4 cos
(√

11C
2

)ª®®¬ 4−
5C
2

We see here that to apply the initial condition H′(0)= 0, the derivative must be
applied before substituting C→ 0.
Solving sets (i.e., systems) of first-order differential equations is similar. Consider

the set of differential equations

H′1(C)= H2(C) − H1(C) and H′2(C)= H1(C) − H2(C).
To find the solution for initial conditions H1(0)= 1 and H2(0)=−1, we can use the
following technique:

t = sp.symbols("t", nonnegative=True)
y1, y2 = sp.symbols("y1, y2", cls=sp.Function, real=True)
odes = [y1(t).diff(t) + y1(t) - y2(t), y2(t).diff(t) + y2(t) - y1(t)]
ics = {y1(0): 1, y2(0): -1}
sol = sp.dsolve(odes, [y1(t), y2(t)], ics=ics)
print(sol)

[Eq(y1(t), exp(-2*t)), Eq(y2(t), -exp(-2*t))]

In engineering, it is common to express a set of differential equations as a state-
space model, as in equation (4.24). The following example demonstrates how to
solve these with SymPy.

Example 4.3

Consider the electromechanical schematic of a direct current (DC) motor shown
in figure 4.6. A voltage source +((C) provides power, the armature winding
loses some energy to heat through a resistance ' and stores some energy in a
magnetic field due to its inductance !, which arises from its coiled structure.
An electromechanical interaction through the magnetic field, shown as M, has
torque constant  " and induces a torque on the motor shaft, which is supported
by bearings that lose some energy to heat via a damping coefficient �. The rotor’s
mass has rotational moment of inertia �, which stores kinetic energy. We denote
the voltage across an element with E, the current through an element with 8, the
angular velocity across an element with Ω, and the torque through an element
with ).
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Ω

Electrical Mechanical

Figure 4.6. An electromechanical schematic of a DC motor.

A state-space model state equation in the form of equation (4.24a) can be derived
for this system, with the result as follows:

3

3C

[
Ω�

8!

]
︸   ︷︷   ︸

x′(C)

=

[
−�/�  "/�
− "/! −'/!

]
︸                 ︷︷                 ︸

G

[
Ω�

8!

]
︸︷︷︸
x(C)

+
[

0
1/!

]
︸︷︷︸

H

[
+(

]
︸︷︷︸
u(C)

.

We choose y=
[
Ω�

]
as the output vector, which yields output equation (i.e.,

equation (4.24b)) [
Ω�

]
︸︷︷︸
y(C)

=
[
1 0

]
︸  ︷︷  ︸

I

[
Ω�

8!

]
︸︷︷︸
x(C)

+
[
0
]

︸︷︷︸
J

[
+(

]
︸︷︷︸
u(C)

.

Together, these equations are a state-space model for the system.
Solve the state equation for x(C) and the output equation for y(C) for the following
case:

• The input voltage +((C)= 1 V for C ≥ 0
• The initial condition is x(0)= 0

We begin by defining the parameters and functions of time as SymPy symbolic
variables and unspecified functions as follows:

R, L, K_M, B, J = sp.symbols("R, L, K_M, B, J", positive=True)
W_J, i_L, V_S = sp.symbols(

"W_J, i_L, V_S", cls=sp.Function, real=True
) # Ω� , 8! , +(
t = sp.symbols("t", real=True)

Now we can form the symbolic matrices and vectors:
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A_ = sp.Matrix([[-B/J, K_M/J], [-K_M/L, -R/L]]) # G
B_ = sp.Matrix([[0], [1/L]]) # H
C_ = sp.Matrix([[1, 0]]) # I
D_ = sp.Matrix([[0]]) # J
x = sp.Matrix([[W_J(t)], [i_L(t)]]) # x
u = sp.Matrix([[V_S(t)]]) # u
y = sp.Matrix([[W_J(t)]]) # y

The input and initial conditions can be encoded as follows:

u_subs = {V_S(t): 1}
ics = {W_J(0): 0, i_L(0): 0}

The set of first-order ODEs comprising the state equation can be defined as
follows:

odes = x.diff(t) - A_*x - B_*u
print(odes)[

�,� (C)
� + 3

3C
,�(C) −  " 8!(C)

�
 ",� (C)

! + 3
3C
8!(C) + '8!(C)

! −
+((C)
!

]
x_sol = sp.dsolve(list(odes.subs(u_subs)), list(x), ics=ics)

The symbolic solutions for x(C) are lengthy expressions. Instead of printing
them, we will graph them for the following set of parameters:

params = {
R: 1, # (Ohms)
L: 0.1e-6, # (H)
K_M: 7, # (N·m/A)
B: 0.1e-6, # (N·m/(rad/s))
J: 2e-6, # (kg·m2)

}

Create a numerically evaluable version of each function as follows:

W_J_ = sp.lambdify(t, x_sol[0].rhs.subs(params), modules="numpy")
i_L_ = sp.lambdify(t, x_sol[1].rhs.subs(params), modules="numpy")

Graph each solution as follows:

t_ = np.linspace(0, 0.000002, 201)
fig, axs = plt.subplots(2, sharex=True)
axs[0].plot(t_, W_J_(t_))
axs[1].plot(t_, i_L_(t_))
axs[1].set_xlabel("Time (s)")
axs[0].set_ylabel("$\\Omega_J(t)$ (rad/s)")
axs[1].set_ylabel("$i_L(t)$ (A)")
plt.show()
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Figure 4.7. The state response to a unit step voltage input.

The output equation is trivial in this case, yielding only the state variableΩ�(C),
for which we have already solved. Therefore, we have completed the analysis.
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4.8 Problems LINK
KB

Problem 4.1 LINK5Z Let B ∈C. Use SymPy to perform a partial fraction expansion on
the following expression:

(B + 2)(B + 10)
B4 + 8B3 + 117B2 + 610B + 500

.

Problem4.2 LINKIE Let G, 01 , 02 , 03 , 04 ∈R. Use SymPy to combine the cosine and sine
terms that share arguments into single sinusoids with phase shifts in the following
expression:

01 sin(G) + 02 cos(G) + 03 sin(2G) + 04 cos(2G)

Problem 4.3 LINKKR Consider the following equation, where G ∈C and 0, 1, 2 ∈R+,

0G2 + 1G + 2
G
+ 12 = 0.

Use SymPy to solve for G.

Problem 4.4 LINKG9 Let F, G, H, I ∈R. Consider the following system of equations:

8F − 6G + 5H + 4I = − 20

2H − 2I = 10

2F − G + 4H + I = 0

F + 4G − 2H + 8I = 4.

Use SymPy to solve the system for F, G, H, and I.

Problem 4.5 LINKIV Consider the truss shown in figure 4.8. Use a static analysis and
the method of joints to develop a solution for the force in each member ��� , ��� ,
etc., and the reaction forces using the sign convention that tension is positive and
compression is negative. The forces should be expressed in terms of the applied
force f� and the dimensions F and ℎ only. Write a program that solves for the forces
symbolically and answers the following questions:

a. Which members are in tension?
b. Which members are in compression?
c. Are there any members with 0 nominal force? If so, which?
d. Which member (or members) has (or have) the maximum compression?
e. Which member (or members) has (or have) the maximum tension?

https://engineering-computing.ricopic.one/kb
https://engineering-computing.ricopic.one/kb
https://engineering-computing.ricopic.one/5z
https://engineering-computing.ricopic.one/ie
https://engineering-computing.ricopic.one/kr
https://engineering-computing.ricopic.one/g9
https://engineering-computing.ricopic.one/iv
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Figure 4.8. A truss with pinned joints, supported by two hinges, with an applied load
f� .

Problem 4.6 LINK49 You are designing the truss structure shown in figure 4.9,
which is to support the hanging of an external load f� =− 5� ĵ, where 5� > 0. Your
organization plans to offer customers the following options:

• Any width (i.e., 2F)
• A selection of maximum load magnitudes != 5�/
 ∈ Γ, where Γ=

{1 kN, 2 kN, 4 kN, 8 kN, 16 kN}, and where 
 is the factor of safety
As the designer, you are to develop a design curve for the dimension ℎ versus

half-width F for each maximum load ! ∈ Γ, under the following design constraints:
• Minimize the dimension ℎ
• The tension in all members is no more than a given )
• The compression in all members is no more than a given �
• The magnitude of the support force at pin A is no more than a given %�
• The magnitude of the support force at pin D is no more than a given %�

Use a static analysis and the method of joints to develop a solution for the force
in each member ���, ��� , etc., and the reaction forces using the sign convention
that tension is positive and compression is negative. Create a Python function that
returns ℎ as a function of F for a given set of design parameters {), �, %� , %� , 
, !}.
Use the function to create a design curve ℎ versus 2F for each ! ∈ Γ, maximum
tension ) = 81 kN, maximum compression � = 81 kN, maximum support A load
%� = 50 kN, maximum support D load %� = 50 kN, and a factor of safety of 
= 5.

https://engineering-computing.ricopic.one/49
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Figure 4.9. A truss with pinned joints, supported by a hinge and a floating support,
with an applied load f� .

Problem 4.7 LINKW5 Consider an LTI system modeled by the state equation of the
state-space model, equation (4.24a). A steady state of a system is defined as the state
vector x(C) after the effects of initial conditions have become relatively small. For a
constant input u(C)= u, the constant state x toward which the system’s response
decays can be found by setting the time derivative vector x′(C)= 0.
Write a Python function steady_state() that accepts the following arguments:
• A: A symbolic matrix representing �
• B: A symbolic matrix representing �
• u_const: A symbolic vector representing u

The function should return x_const, a symbolic vector representing x.
The steady-state output converges to y the corresponding output equation

of the state-space model, equation (4.24b). Write a second Python function
steady_output() that accepts the following arguments:
• C: A symbolic matrix representing �
• D: A symbolic matrix representing �
• u_const: A symbolic vector representing u
• x_const: A symbolic vector representing x

This function should return y_const, a symbolic vector representing y.
Apply steady_state() and steady_output() to the state-space model of the

circuit shown in figure 4.10, which includes a resistor with resistance ', an inductor
with inductance !, and capacitor with capacitance �. The LTI system is represented
by equation (4.24) with state, input, and output vectors

x(C)=
[
E�(C)
8!(C)

]
, u(C)=

[
+(

]
, y(C)=

[
E�(C)
E!(C)

]

https://engineering-computing.ricopic.one/w5
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and the following matrices:

�=

[
0 1/�
−1/! −'/!

]
, �=

[
0

1/!

]
, � =

[
1 0
−1 −'

]
, � =

[
0
1

]
.

Furthermore, let the constant input vector be

u =
[
+(

]
,

for constant +(.

+
−+((C)

' !

�

Figure 4.10. An RLC circuit with a voltage source +((C).

Problem 4.8 LINK8U Consider the electromechanical state-space model described in
example 4.3. For a given set of parameters, input voltage, and initial conditions, the
following vector-valued functions have been derived:

L =



∫ C

0
E'(C) 3C∫ C

0
E!(C) 3C∫ C

0
Ω�(C) 3C∫ C

0
Ω�(C) 3C


=


exp(−C)
exp(−C)

1− exp(−C)
1− exp(−C)

 , M=



∫ C

0
8'(C) 3C∫ C

0
8!(C) 3C∫ C

0
)�(C) 3C∫ C

0
)�(C) 3C


=


exp(−C)
exp(−C)

1− exp(−C)
exp(−C)


The instantaneous power lossed or stored by each element is given by the following
vector of products:

P(C)=


E'(C)8'(C)
E!(C)8!(C)
Ω�(C))�(C)
Ω�(C))�(C)

 .
The energy ℰ(C) of the elements, then, is

E(C)=
∫ C

0
P(C)3C.

Write a program that satisfies the following requirements:

a. It defines a function power(F, G) that returns the symbolic power vector
P(C) from any inputs L and M

https://engineering-computing.ricopic.one/8u
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b. It defines a function energy(F, G) that returns the symbolic energy E(C)
from any inputs L and M (energy() should call power())

c. It tests the energy() on the specific L and M given above

Problem 4.9 LINKFJ For the circuit and state-space model given in problem 4.7, use
SymPy to solve for x(C) and y(C) given the following:
• A constant input voltage +((C)=+(
• Initial condition x(0)= 0
Substitute the following parameters into the solution for y(C) and create numeri-

cally evaluable functions of time for each variable in y(C):
'= 50 Ω, != 10 · 10−6 H, � = 1 · 10−9 F, +( = 10 V.

Plot the outputs in y(C) as functions of time, making sure to choose a range of
time over which the response is best presented. Hint: An appropriate amount of
time is on the scale of microseconds.

https://engineering-computing.ricopic.one/fj
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https://engineering-computing.ricopic.one/mz
https://engineering-computing.ricopic.one/mz
https://engineering-computing.ricopic.one/m2


A Notebooks
LINK
CK

https://engineering-computing.ricopic.one/ck
https://engineering-computing.ricopic.one/ck




B Documenting and Presenting Programs LINK
AV

asdf

https://engineering-computing.ricopic.one/av
https://engineering-computing.ricopic.one/av




C Version Control
LINK
VC

https://engineering-computing.ricopic.one/vc
https://engineering-computing.ricopic.one/vc




D Lists of Figures and Tables LINK
RY

D.1 List of Figures LINK
QJ

1.1 The Spyder IDE when it first loads 4

2.1 The functional design method (a) at the highest level and (b) in general, for any
level. 47

3.1 A “computer room” at the NACA (precursor to NASA) high-speed flight station
in 1949 (NASA 2002). 55

3.2 Percent predicted probability of public policy adoption for economic elites and
average citizens. Study, results, and statistical model by Gilens and Page (2014). 74

3.3 A graph of polynomial 5 (G). 76

3.4 Ideal gas pressure versus volume for different temperatures. 78

3.5 A bar chart of thermal conductivity for metals (data from Carvill (1994)). 80

3.6 A histogram of my movie ratings on a 0–10 scale. 81

3.7 A polygon and vectors from ' to two consecutive vertices. 88

4.1 A symbolic expression tree for sp.sqrt(3)/2. 93

4.2 A truss with pinned joints, supported by a hinge and a floating support, with an
applied force f� . 110

4.3 A graph of
√
A2 + 1, where A =F/ℎ. 114

4.4 A resistor circuit design for example 4.2. 119

4.5 A design graph for resistors '1, '2, and '3. 122

4.6 An electromechanical schematic of a DC motor. 133

4.7 The state response to a unit step voltage input. 135

4.8 A truss with pinned joints, supported by two hinges, with an applied load f� . 137

4.9 A truss with pinned joints, supported by a hinge and a floating support, with an
applied load f� . 138

4.10 An RLC circuit with a voltage source +((C). 139

https://engineering-computing.ricopic.one/ry
https://engineering-computing.ricopic.one/ry
https://engineering-computing.ricopic.one/qj
https://engineering-computing.ricopic.one/qj


150 Appendix D

D.2 List of Tables LINK
9L

1.1 Boolean and comparison operators on Boolean and integer
inputs x and y 9

1.2 Format specifier terms. 11

1.3 Format specifier types. 12

1.4 Some particularly useful string methods. 12

1.5 Mutability of commonly used built-in types. 14

1.6 Commonly used list methods for a list l. 15

1.7 Dictionary instance methods for dictionary instance d and class method for class
dict. 18

2.1 Python standard library modules of particular interest to the engineer. 34

3.1 JSON to Python reading conversion. 69

3.2 Python to JSON writing conversion. 70

4.1 Elementary mathematical functions in SymPy. 95

https://engineering-computing.ricopic.one/9l
https://engineering-computing.ricopic.one/9l


Bibliography

Abelson, Hal, and Gerald Jay Sussman. 2016. Structure and Interpretation of Computer Programs.
2nd ed. MIT Press (orig. 1996). https://engineering-computing.ricopic.one/5n.

Carvill, James. 1994.Mechanical Engineer’s Data Handbook. Butterworth-Heinemann.

Cross, Nigel. 2021. Engineering Design Methods: Strategies for Product Design, 5th Edition. 5th ed.
Wiley. http://gen.lib.rus.ec/book/index.php?md5=988D6046DBEE3E1452E2F099079B445E.

Filik, Ruth, Alexandra Ţurcan, Christina Ralph-Nearman, and Alain Pitiot. 2019. “What is the
difference between irony and sarcasm? An fMRI study.” [in eng]. Cortex 115 (June): 112–122.
https://doi.org/10.1016/j.cortex.2019.01.025. https://engineering-computing.ricopic.one/e8.

Gilens, Martin, and Benjamin I. Page. 2014. “Testing Theories of American Politics: Elites,
Interest Groups, and Average Citizens.” Perspectives on Politics 12 (3): 564–581. https://doi
.org/10.1017/S1537592714001595.

Gonzalez, Ryan, Philip House, Ivan Levkivskyi, et al. 2024. PEP 526 – Syntax for Variable
Annotations, February (orig. 2016). https://engineering-computing.ricopic.one/9x.

Google. 2024. Google Python Style Guide, February. https://engineering-computing.ricopic
.one/ne.

Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, et al. 2020. “Array Programming
with NumPy.” Nature 585, no. 7825 (September): 357–362. https://doi.org/10.1038/s41586
-020-2649-2. https://doi.org/10.1038/s41586-020-2649-2.

Hunt, A., and D. Thomas. 1999. The Pragmatic Programmer: From Journeyman to Master. Pearson
Education.

Hunter, J. D. 2007. “Matplotlib: A 2D graphics environment.” Computing in Science &
Engineering 9 (3): 90–95. https://doi.org/10.1109/MCSE.2007.55.

Johnston, Nathaniel, and Dave Greene. 2022. Conway’s Game of Life: Mathematics and Construc-
tion. Self-published. https://doi.org/10.5281/zenodo.6097284.

Kreyszig, E. 2010. Advanced Engineering Mathematics. 10th ed. John Wiley & Sons.

Langa, Łukasz, and contributors to Black. 2024. Black: The Uncompromising Python Code
Formatter, February. https://engineering-computing.ricopic.one/8n.

NASA. 2002. NACA High Speed Flight Station “Computer Room”, June (orig. 1949). https://engin
eering-computing.ricopic.one/mz.

https://engineering-computing.ricopic.one/5n
http://gen.lib.rus.ec/book/index.php?md5=988D6046DBEE3E1452E2F099079B445E
https://doi.org/10.1016/j.cortex.2019.01.025
https://engineering-computing.ricopic.one/e8
https://doi.org/10.1017/S1537592714001595
https://doi.org/10.1017/S1537592714001595
https://engineering-computing.ricopic.one/9x
https://engineering-computing.ricopic.one/ne
https://engineering-computing.ricopic.one/ne
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.6097284
https://engineering-computing.ricopic.one/8n
https://engineering-computing.ricopic.one/mz
https://engineering-computing.ricopic.one/mz


152 References

NumPy Developers. 2024a. NumPy Reference, February (orig. 2022). https://engineering-comp
uting.ricopic.one/u5.

NumPy Developers. 2024b. NumPy User Guide, February (orig. 2022). https://engineering
-computing.ricopic.one/5y.

NumPy Developers. 2024c. NumPy: The Absolute Basics for Beginners, February (orig. 2022).
https://engineering-computing.ricopic.one/3l.

Python Community. 2024a. Python 3.X Documentation, January. https://engineering-computing
.ricopic.one/n3.

Python Community. 2024b. Python Package Index, January. https://engineering-computing
.ricopic.one/e0.

Python Community. 2024c. Python Packaging User Guide, January. https://engineering-comput
ing.ricopic.one/w9.

Rossum, Guido van, Jukka Lehtosalo, and Łukasz Langa. 2024. PEP 484 – Type Hints, February
(orig. 2014). https://engineering-computing.ricopic.one/z9.

Rossum, Guido van, Barry Warsaw, and Alyssa Coghlan. 2024. PEP 8 – Style Guide for Python
Code, February (orig. 2001). https://engineering-computing.ricopic.one/3z.

SymPy Development Team. 2023a. Advanced Expression Manipulation,May. https://engineering
-computing.ricopic.one/95.

SymPy Development Team. 2023b. Core [SymPy Documentation], May. https://engineering
-computing.ricopic.one/92.

SymPy Development Team. 2023c. Simplification,May. https://engineering-computing.ricopic
.one/14.

SymPy Development Team. 2023d.Writing Custom Functions,May. https://engineering-comp
uting.ricopic.one/3c.

Tufte, Edward R. 2001. The Visual Display of Quantitative Information. 2nd ed. Graphics Press.

Yasskin, Jeffrey. 2024. PEP 3141 – A Type Hierarchy for Numbers, February (orig. 2007). https://e
ngineering-computing.ricopic.one/41.

https://engineering-computing.ricopic.one/u5
https://engineering-computing.ricopic.one/u5
https://engineering-computing.ricopic.one/5y
https://engineering-computing.ricopic.one/5y
https://engineering-computing.ricopic.one/3l
https://engineering-computing.ricopic.one/n3
https://engineering-computing.ricopic.one/n3
https://engineering-computing.ricopic.one/e0
https://engineering-computing.ricopic.one/e0
https://engineering-computing.ricopic.one/w9
https://engineering-computing.ricopic.one/w9
https://engineering-computing.ricopic.one/z9
https://engineering-computing.ricopic.one/3z
https://engineering-computing.ricopic.one/95
https://engineering-computing.ricopic.one/95
https://engineering-computing.ricopic.one/92
https://engineering-computing.ricopic.one/92
https://engineering-computing.ricopic.one/14
https://engineering-computing.ricopic.one/14
https://engineering-computing.ricopic.one/3c
https://engineering-computing.ricopic.one/3c
https://engineering-computing.ricopic.one/41
https://engineering-computing.ricopic.one/41


Contributors

Associate Professor Rico A.R. Picone
Department of Mechanical Engineering
Saint Martin’s University
Lacey, Washington, USA


	Table of Contents
	1 Introduction
	1.1 Introduction
	1.2 The Development System
	1.2.1 The Anaconda Distribution of Python
	1.2.2 Hello World and the Spyder IDE
	1.2.3 Configuring the Spyder IDE for Anaconda

	1.3 Basic Elements of a Program
	1.3.1 Classes, Objects, and Methods
	1.3.2 Basic Built-In Types
	1.3.3 Iterable Objects and Dictionaries

	1.4 Lists
	1.4.1 Accessing List Elements
	1.4.2 Mutability
	1.4.3 Methods

	1.5 Tuples and Ranges
	1.6 Dictionaries
	1.7 Functions
	1.8 Branching
	1.8.1 Branching with if/elif/else Statements
	1.8.2 Branching with match/case Statements
	1.8.3 Branching with try/except/finally Statements

	1.9 Looping
	1.10 Problems 

	2 The Structure, Style, and Design of Programs
	2.1 Python Interpreters and Interactive Sessions
	2.2 Scripts, Modules, and Imports
	2.3 The Python Standard Library and Packages
	2.3.1 The Standard Library
	2.3.2 Packages

	2.4 Namespaces, Scopes, and Contexts
	2.5 Defining Classes
	2.5.1 Derived Classes

	2.6 Style Conventions
	2.6.1 Docstrings
	2.6.2 Type hints

	2.7 The Design of Programs
	2.7.1 The Functional Analysis Design Method
	2.7.2 Algorithm Representation via Pseudocode

	2.8 Problems 

	3 Numerical Analysis I: Representations, Input and Output, and Graphics
	3.1 Arrays
	3.1.1 Creating Arrays
	3.1.2 Accessing, Slicing, and Assigning Elements
	3.1.3 Appending To and Concatenating Arrays

	3.2 Manipulating, Operating On, and Mapping Over Arrays
	3.2.1 Array Manipulation Functions and Methods
	3.2.2 Operations on Arrays and Broadcasting
	3.2.3 Mapping Over Arrays and Lambda Functions

	3.3 Input and Output
	3.3.1 User Input
	3.3.2 Text Files
	3.3.3 JSON Files
	3.3.4 CSV Files
	3.3.5 NumPy Input and Output
	3.3.6 Pickle Files

	3.4 Introducing Graphics
	3.4.1 Function Graphs
	3.4.2 Plots
	3.4.3 Charts

	3.5 Problems 

	4 Symbolic Analysis
	4.1 Symbolic Expressions, Variables, and Functions
	4.1.1 Symbolic Variables
	4.1.2 Symbolic Functions

	4.2 Manipulating Symbolic Expressions
	4.2.1 The simplify() Function and Method
	4.2.2 Polynomial and Rational Expression Manipulation
	4.2.3 Trigonometric Expression Manipulation
	4.2.4 Power Expression Manipulation
	4.2.5 Exponential and Logarithmic Expression Manipulation
	4.2.6 Rewriting Expressions in Terms of Other Functions
	4.2.7 Substituting and Replacing Expressions

	4.3 Solving Equations Algebraically
	4.3.1 The sp.solve() Function

	4.4 From Symbolics to Numerics
	4.5 Vectors and Matrices
	4.6 Calculus
	4.6.1 Derivatives
	4.6.2 Integrals
	4.6.3 Limits
	4.6.4 Taylor Series

	4.7 Solving Ordinary Differential Equations
	4.8 Problems 

	5 Numerical Analysis II: Techniques
	5.1 Problems 

	A Notebooks
	B Documenting and Presenting Programs
	C Version Control
	D Lists of Figures and Tables
	D.1 List of figures
	D.2 List of tables

	Bibliography

