
2 Chapter 1

code libraries called packages that can be used for engineering computing. We will
use a few key packages in this book, and there are many more available on the Inter-
net, especially at https://engineering-computing.ricopic.one (Python Community
2024b).
There are several classes of engineering analysis performed with engineering

computing. The following list captures the majority of problems, but it is far from
exhaustive.

Numerical Analysis Many engineering problems can be approached by perform-
ing numerical calculations. These can be challenging or even intractable to
performmanuallywhen the problem requiresmany such calculations.Numer-

ical analysis use systematic procedures called algorithms to perform the
calculations with a computer. These techniques use the computer to perform,
store, and organize these calculations. This class of problems, sometimes
called simulation, comprise the majority of engineering computing problems.

Symbolic Analysis Symbolic analysis, sometimes called “analytic” as opposed to
“numerical,” is closely related to mathematics. Mathematical variables can
be directly manipulated via algebraic methods (including those of calculus).
Computer programs that treat these variables symbolically are called com-

puter algebra systems (CASs). Although these systems can be somewhat
cumbersome, for complex problems they provide distinct advantages.

Graphical Analysis Visualization techniques are an important aspect of engineer-
ing analysis. Graphics—often graphs, plots, and charts—can be generated
by programs much more quickly and accurately than they can be created
manually. The result of an engineering computing program is often a graphic.

In this book, we will introduce all three classes of analysis.

1.2 The Development System LINK
89

D1In general, a computerdevelopment system is one that is used towrite,
execute, debug, and deploy computer programs. Our development
system is comprised of the following components:

• A personal computer (PC) (e.g., one running the Windows, macOS, or Linux
operating system)
• The Anaconda distribution of the Python 3 software
• The Spyder integrated development environment (IDE)

An IDE is a software application in which a programmer can write, execute, and
debug their programs.

https://engineering-computing.ricopic.one
https://engineering-computing.ricopic.one/89
https://engineering-computing.ricopic.one/89

Introduction 3

On your PC, set up your development system with the following steps:

1. Download the Anaconda distribution of the Python software from the follow-
ing URL:
www.anaconda.com/download
Open the installer and follow the instructions for installation.

2. Download and install the Spyder IDE from the following URL:
www.spyder-ide.org
Open the installer and follow the instructions for installation.

1.2.1 The Anaconda Distribution of Python

Anaconda provides a way of managing multiple Python environments; a Python
environment is a specific version of Python with a set of packages. For a given
project, it is best practice to maintain a separate environment; this allows us to
specify a Python version and set of packages required to run the programs in the
project. Anaconda provides a framework in which we can create an environment,
called a conda environment.
We will use the default base environment. To create your own environments

or add packages, see the instructions in the Anaconda documentation:
LINK
0E

https://engineering-computing.ricopic.one/0e.

1.2.2 Hello World and the Spyder IDE

When it is first loaded, the Spyder IDE looks something like what is
shown in figure 1.1.

www.anaconda.com/download
www.spyder-ide.org
https://engineering-computing.ricopic.one/0e
https://engineering-computing.ricopic.one/0e
https://engineering-computing.ricopic.one/0e

4 Chapter 1

Figure 1.1. The Spyder IDE when it first loads

The left pane is the code editor. It has a default Python file, which convention-
ally has extension .py, already queued up. Create a new Python file by selecting
the menu item File New file… . Save this file (File Save) as hello_world.py in a
dedicated directory.1

The hello_world.py file already contains a triple-quoted string with basic
information about the file. Below the ending quotes, add the following statement:

print("Hello World!")

Save the file and run it with the menu selection Run Run or the key F5 .
The console pane on the lower right shows the result of the execution of the file,

which is the output

Hello World!

Now let’s edit the program as follows:

1. In programming, file names should not include spaces, periods (other than for the extension), or most
special characters. As a word separator, the hypen - is usually fine, but the underscore _ is topically
safer. For Python files, the underscore is preferable.

Introduction 5

greeting = "Hello World!"
print(greeting)

This should yield the same result in the console. In the upper-right pane, select the
Variable Explorer tab. This shows variable names, types, and values in the current
kernel. A kernel is a computing process that runs programs. In most environments,
when a program runs, a kernel is created at the start and destroyed at the end of
execution. However, Spyder maintains the same kernel between runs. This is con-
venient for debugging purposes. For instance, we can interact with the program(s)
run in the current kernel by entering commands in the console; try entering

greeting

This will return the value of the variable greeting. The console is a convenient
place to try out statements as we work on our program. For instance, we may want
to append some text to the greeting string. In the console, try

greeting + "It's a beautiful day"

This returns, Hello World!It's a beautiful day, which is close but not quite
what we wanted. We should add a space character to the beginning of our
addendum. So, trying it out in the console allowed us to quickly debug our code.
The persistent kernel can also cause problems. Sometimes we may want to create

a new kernel by selecting the menu item Consoles Restart kernel , which clears all
variables and unloads any packages. Similarly, to clear all variables in the kernel,
we can execute the consolemagic command

%reset

We will be asked to confirm, which we can do by entering y.

1.2.3 Configuring the Spyder IDE for Anaconda

In section 1.2.2, we used the Python distribution that Spyder has built in. We here
configure Spyder to use the Anaconda distribution installed in section 1.2.1. First,
we must install the spyder-kernels package in the base Anaconda environment.
On a Windows PC, open the Anaconda Prompt application; on MacOS or Linux,
open the Terminal application. To ensure you have activated the base environment,
enter the following prompt:

conda activate base

Now install the spyder-kernels package with the command

conda install spyder-kernels

6 Chapter 1

Enter y if prompted. After successful installation, conda list should display the
packages installed in the base environment, including spyder-kernels. Finally,
enter the command

which python

Copy or record the returned path.
In Spyder, open preferences with Ctrl + , . Navigate to the tab Python Interpreter

and check Use the following Python interpreter . Either paste the path copied above in the
text field or click the Select file button, then navigate to the path in question, selecting
the python program. Click OK to complete the configuration.
You may need to restart Spyder for the changes to take effect.

1.3 Basic Elements of a Program LINK
C0

Every programming language has a syntax: rules that describe the
structure of valid combinations of characters and words in a program.
When one first begins writing in a programming language, it is common to generate
syntax errors, improper combinations of characters andwords. Every programming
language also has a semantics: a meaning associated with a syntactically valid
program. A program’s semantics describe what a program does.
In Python and in other programming languages, programs are composed of a

sequence of smaller elements called statements. Statements do something, like per-
form a calculation or store a value in memory. For instance, x = 3*5 is a statement
that computes a product and stores the result under the variable name x. Many
statements contain expressions, each of which produces a value. For instance, 3*5
in the previous statement is an expression that produces the value 15.
An expression contains smaller elements called operands and operators. Com-

mon operands include identifiers—names like variables, functions, and modules
that refer to objects—and literals—notations for constant values of a built-in type.
For instance, in the previous expression x is a variable identifier and 3 and 5 are
literals that evaluate to objects of the built-in integer class. The * character in
the previous expression is the multiplication operator. Python includes operators
for arithmetic (e.g., +), assignment (e.g., =), comparison (e.g., >), logic (e.g., or),
identification (e.g., is), membership (e.g., in), and other operations.

Example 1.1

Create a Python program that computes the following arithmetic expressions:

G = 4069 · 0.002, H = 100/1.5, and I = (−3)2 + 15− 3.01 · 10.

Multiply these together (GHI) and print the product, along with G, H, and I to
the console.

https://engineering-computing.ricopic.one/c0
https://engineering-computing.ricopic.one/c0

